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A B S T R A C T  

Let T(t) be the translation group on Y = C0(R × K) = C0(R) ® C(K), K 
compact Hausdorif, defined by T(t)f(z ,  y) = f (z  + t, y). In this paper we 

give several representations of the sun-dial Y® corresponding to this group. 

Motivated by the solution of this problem, viz. Y® = L;(~) ® M(K), we 
develop a duality theorem for semigroups of the form T0(t)®id on tensor 

products Z ® X  of Banach spaces, where To(t) is a semigroup on Z. Under 
appropriate compactness assumptions, depending on the kind of tensor 

product taken, we show that the sun-dial of Z ® X is given by Z ® ® X*. 
These results are applied to determine the sun-dials for semigroups induced 
on spaces of vector-valued functions, e.g. C0(~; X) and LP(p; X). 

I n t r o d u c t i o n  

Suppose  p is a complex  Borel  measure  of  b o u n d e d  var ia t ion  on R. For  t E R 

define the  measu re  Pt by  p t ( A )  = p ( A  + t).  Then  a classical  t heo rem due  to 

P lessner  [P1] s ta tes  tha t  limt--.0 I[# - ~tl[ = 0 if  a n d  only if # << m,  where  m 
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denotes the Lebesgue measure on R. In Section 2 of this paper we derive the 

following analogue of this result for vector-valued measures: let X be a Banach 

space and let # be an X-valued Borel measure of bounded variation on R, then 

limt-.0 IIp-ptll = 0 if and only if p 6 LI (p ;X) .  By the Radon-Nikodym theorem, 

the case X = C reduces to Plessner's theorem. 

In case X = Y* is a dual space, this result can be restated in terms of the 

translation group in the following way: if T(t) denotes the translation group on 

C0(R; Y) then L 1 (R; Y*) is the maximal space of strong continuity of the adjoint 

T*(t) of T(t). Now both C0(R;Y) and LI(R;Y*) can be written as certain 

tensor products, namely C0(R;Y) - C0(R)@,Y and LI (R;Y *) = LI(R)@,Y * 

(the injective resp. projective tensor product)~ whereas the translation group on 

C0(R; Y) can be regarded as the tensor product To(t) ® id, with To(t) denoting 

translation on C0(R). This suggests the following question: 

Given two Banach spaces Z, X, a strongly continuous semigroup To(t) on Z, 

with Z O the maximal space of strong continuity of T~)(t), when is it true that we 

have a formula like (Z ® X) O = Z O ® X*? 

Here (Z ® X) O is the maximal space of strong continuity of the adjoint of 

the induced semigroup To(t) ® id on Z ® X. This question will be addressed in 

Section 3 for the injective and projective tensor product. These results can be 

applied to the vector-valued function spaces LI(#; X) and C0(~; X). In order to 

treat also LV(#; X) for 1 < p < oo we study in Section 4 the/- tensor  product. 

1. Adjoint Semigroups 

In this section we will recall some of the standard results on adjoint semigroups. 

Proofs can be found in [BB, P]. Let {To(t)}t>o (briefly, To(t)) be a C0-semigroup 

on a Banach space X. The ad jo in t  T~(t) of To(t) is the semigroup on X* defined 

by T~(t) := To(t)*. From 

I(T;(t)x* - T~(s)x*,x)l <- IIx*ll IIT0(0x - n(s)x l l  

one sees that  the map t ~ T~(t)x* is weak*-continuous for every x* 6 X*. 

Hence if X is reflexive, then T~(t) is weakly continuous and therefore strongly 

continuous. However in general T~(t) is not strongly continuous and it makes 

sense to define the sun-dual X O as the maximal subspace of X* on which T~(t) 
acts in a strongly continuous manner: 

X ° = {x* 6 X* :  limllT~(t)x* - x*ll = 0}. 
t£0 
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X ® is a norm-closed, weak*-dense subspace of X*. In fact, one has 

X e = D(A;), 

where A~ is the adjoint of the generator A0 of T0(t); the closure is taken with 

respect to the norm-topology of X*. Letting R(A, A0) = (A - A0) -1 be the resol- 

vent of To(t), then R(A, A~) = R(A, A0)* and D(A~) = R(A, A~)X*. Clearly X ® 

is invariant under T~(t). By restricting T~(t) to X ® one obtains a strongly con- 

tinuous semigroup on X ®, which we will denote T~(t). Let A0 e be its generator, 

then one can show that A~ is precisely the part of A~ in X ®. 

PROPOSmON 1.1: Let k >_ 1 and )~ e e(Ao). Then X ® = R(A,A~)kX *. 

In fact, R(A, A;)kX * = D((A~) k) D h((Aeo ) k) and the latter is norm-dense in 

X ® since A0 e is a generator on X ®. 

Starting from T~(t) one can repeat the duality construction and define To°*(t) 

and X ®® = (X®) ®. The canonical map j : X ~ X ®*, 

(jx, x 0) := (x®,x) 

is an embedding mapping X into X @®. In case j X  = X ®® we say that X is 

sun-reflexive wi th  respec t  to To(t). It is well-known that this is the case if 

and only if R(A, A0) is weakly compact [Pa2]. 

The spectra of A0, A~ and A0 e coincide, see e.g. [Na, i-III]. This will be used 

throughout this paper, as well as more or less obvious identities like R(A, Ao)*x ® 

= R(A,A°o)~ ® (~® e x®),  etc. 

2. Translat ion in C0(R; X) 

Let X be a Banach space. On C0(R; X) the translation group T(t) is defined by 

T(t) f(s)  = f ( t  + s), t E R. 

In this section we prove in two different ways that the sun-dual on C0(R; X) with 

respect to T(t) is given by LI(R;X*). 

Let M(R; X) denote the Banach space of all countably additive X-valued vec- 

tor measmes of bounded variation [DU]. If X is the scalar field we simply write 

M(R). For/~ E M(R; X) its var ia t ion I~l ~ M(R) is defined by 

I~I(E) :-- sup{ Z II~(E n A)II}, 
AE~r 
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where the supremum is taken over all partitions ~r of R into finitely many disjoint 

subsets. If tt E M(R; X) then I~1 is a finite positive measure in M(R). 

It is well-known (see [DU, pp. 181-182]) that the dual of C0(R; X) may be 

identified with M(R; X*) and we have 

II ~ S d.II < L IlSll dl.I, S c0(R;x), # E M(R;X*).  

The space L 1 (R; X) can be identified with a closed subspace of M(R; X) in the 

following way: for h E L 1 (R; X) define/~h E M(R; X) by 

/~h(E) := fE  h d r .  

LEMMA 2.1: Suppose # E M(R;X)  and f e C(R) with limt--.-oof(t) = O. 
Define 

f_ F(r) := f(s) d~t(s). 
o o  

Then F is strongly measurable. 

Proof." In order to apply Pettis' measurability theorem [DS], we must show that 

(i) F is weakly measurable, and (ii) F is essentially separably-valued. 

To prove (i) first let m be a measure in M(R). Then .g' defined by 

F(r)  := f(s) din(s) 
o o  

is measurable. (To see this, we may assume that/~ and f are real-valued, split 

f = f+ - f_ and m = m+ - m_ and note that if f and m are pos i t ive  then 

_~ is monotone, hence measurable). Using this we see that for any x* E X* the 

function 

/2 r ~ (z*,F(r))  = f(s) d(x*,lt)(s) 
o o  

is measurable. This proves (i). 

To prove (ii) define 

// F~(r) := If(s)l dl,l(s). 
o o  

Since F1 is monotone, F1 is continuous except at a countable set E. For r0 ¢ E,  

r E R we have 

// // I I F ( r ) -  F(r0)ll = II f (s )  dF(s)ll _< I/(s)l dlFl(s) = I F l ( r ) -  Fl(r0)[. 
0 0 

From this it follows that F is continuous as well on R \E .  Since moreover R \ E  

is separable it follows that F ( R \ E )  is separable. This proves (ii). | 
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THEOREM 2.2: //" T(t) is the translation group on Co(R; X) then Co(R; X) ° = 

L I ( ~ ; X ' ) .  

Proof: First we prove that LI(R;X *) C C0(R;X) °. Let x* E X* and f E 

LI(R). Define f ® z *  E LI(R;X *) by 

( f  ® X*)(S) = f(s)x*. 

Since translation is continuous on LI(R) it is clear that f ® x* E C0(R;X) °.  

Since the linear span of such functions is dense in LI(R;X*), the inclusion 

L~(R;X *) C C0(R;X) ° follows. We now prove the reverse inclusion. Let A 

be the generator of T(t). Since C0(R;X) ° = D(A*) it suffices to prove the in- 

clusion R(A,A*)M(R;X*) C L~(R;X*). For f E C0(R;X), # E M(R;X*) we 

have 

LF (R(a,A*)~,I) = (~,,R(a,A)I) = ~-~'f(~ + 0  et e . (s)  

= fR/°~eX(S-Of(t) dt d#(s) 

= ~ f/oo eX(S-t)f(t) d#(s) dt 

= [ f(t)F(t) dt, 
dR 

where 

F(t) := e -~t e ~" dtz(s ). 

We will show that F E LI(R;X*). By Lemma 2.1, F is strongly measurable. 

But then we have 

II/~ F(t) dill _</~ llF(t)H ~t 
,,/: = e -xt e x~ dg(s)l I dt 

o o  

= ~ l . l ( a )  < ~ .  

- I  

This proves that F E LI(R; X*). But since we had 

(R(~, A*)lz, f)  = [ f(t)F(t) dt 
JR 
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for all f it is clear that F = R(A, A*)/~ and the proof is finished. | 

For # e M(R; X) and t E R we define i~t e M(R; X)  by I~t(E) = #(E + t), 

where E C R is measurable. According to Theorem 2.2 we have, in case X is a 

dual space, that ]l/*t - #11 ~ 0 as t ~ 0 if and only if # E L 1 (R; X). This easily 

extends to the case where X is an arbitrary Banach space. 

COROLLARY 2.3: Let # E M(R;X). Then limt--.o [[#t -#[[ = 0 if and only if 

@ LI(R; X). 

Proof: Suppose ][/~, -/~11 -* 0. Regarding # as an X**-valued vector measure, 

it follows from Theorem 2.2 that/~ E LI(R;X**). But since # takes its values in 

X, the same must be true for the density function h~, representing #. In fact, by 

the Lebesgue differentiation theorem [DU, III. 12.8] we have, for almost all s, 

h~,(s) = ~--.olim -~1 f~+~ 
1 ,  

h , , ( r )  dr  -- lira - g t s ,  s + ~). 
e---*0 ot,~ 

Since #(s, s + ¢) E X for all ~ it follows that h ,  is X-valued. The converse 

assertion is clear. | 

In the scalar case it is well-known that C0(R) oo  = BUC(R),  the Banach 

space of bounded, uniformly continuous functions on R. As might be expected, 

in the vector-valued case we get C0(R; X) ° °  = BUC(R; X**). This follows from 

Theorem 3.11 below. 

We will now investigate the special case of Theorem 2.2 where X = C(K) with 

K compact Hausdorff (or X = C0(f~) with f~ locally compact Hausdorff). We 

have C0(R; C(K)) ~- Co(R × K). The following lemma is more or less standard. 

LEMMA 2.4: Suppose B C M(K)  is separable. Then there is a positive # E 

M(K)  such that v <</~/'or all v E B. 

Proof: Let (vn) be a dense sequence in B and define 

OO 

Then v,, <</~ for all n, so by closure also v <</~ for all v E B. I 

Identifying C0(R; C(K)) with C0(R x K)  the translation group from above is 

given by 

T(t) f (x ,  y) = f (x  + t, y). 
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The following result gives an alternative representation of the sun-dual of C0(R × 

K) with respect to this group. Lebesgue measure on R will be denoted by m; 

#a ®/*2 denotes the product measure of two measures #1,/12. 

THEOREM 2.5: C0(R x K) ® = [.Jo<UfiM(K)LI( R x K , m  @ #). 

Proof: By Theorem 2.2 we have C0(R × K) ® = La(R;M(K)).  But any f E 

L 1 (R; M(K))  is essentially separably valued. Therefore without loss of generality 

we may assume that {f(t) : t E R} is a separable subset of M(K).  By Lemma 

2.4 there is a positive # E M(K)  such that f( t)  << # for all f .  By the Radon- 

Nikodym theorem we may regard f as an element of L1(R; L~(K,#)). By the 

Fubini theorem, the latter is isometric to LI(R × K , m  ® #). This proves the 

inclusion C. For the reverse inclusion, let/t  > 0 mad pick f E LI(R × K , m  ®#). 

Approximate f by a compactly supported j? in C(R x K) and note that translation 

of ] is continuous in the L l-norm. II 

By Theorem 2.5, any v E C0(R × K) ® belongs to some L~(R × K, m ®/t) with 

/z _> 0. We will now give an explicit description of a possible choice for ~t. For 

v E M(R × K) positive, define rcv E M(K)  by 7ru(F) := v(R × F). Then for 

f E C(K) we have 

We need the following lemma. 

LEMMA 2.6: Let A, p and v be positive measures in M(R), M(K)  and M(R × K) 

respectively. If v << A ® # then v << A ® 7ru. 

Proof'. By assumption there is an h E LI(R x K,A ® #), h _> 0 a.e., such that 

du = h d(A ® #). Define 

K0:={yeK: fRh(x,y) dA(x)=O}; 
K, := {V e K: fR h(z, V) dA(x) > 0}. 

By the Fubini theorem, 

0 
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Now suppose (A ® rcu)(A) = 0. We have to show that  u(A) = 0. But we have 

0 = ® = [./. x . ( x , y )  

Since /~ h(z, V) d~(z) > 0 for V • = , ,  we , ~  that A n (R × = , )  is ~ ~ ® ~- 

null set, hence also a u-null set (since by assumption u << A ®/~). Therefore 

A c (A n (R × Kx)) U (R × K0) is a ~-nun set. , 

Combination of Theorem 2.5 and Lemma 2.6 gives the following intrinsic char- 

acterization of those u belonging to C0(R × K )  O. 

THEOREM 2.7: u • C0(R x K) ° if and only if u << m ® ~r[u[. 

One might wonder whether there is a more direct proof of Theorem 2.7. Indeed 

such a proof can be given. What  may be more surprising is that  it is possible to 

re-deduce Theorem 2.2 as a corollary from 2.7. Since we think that  this approach 

is interesting in its own right, we will carry it out. 

Direct proof of Theorem 2.7: If u • L~(R x K,m ® r]u[) then as in the proof 

of Theorem 2.5 we have u • C0(R x K )  O. The proof of the converse proceeds in 

two steps. For Borel measures/~ on R and u on R x K define the 'convolution' 

# * u o n R x K b y  

f~xKf d(#*u)= fRxK fRf(x +t,y) d#(t) du(x,Y)" 

Now let u • Co(R x K )  ®. 

STEP 1: For T > 0 let m[o,T] be the Borel measure on R defined by m[o,T](E) = 

m(Ef3 [0, T]). For f E Co(R x K )  and T > 0 we have 

= ~(mto, ~ • u, l ) .  
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This shows that  the equality 

1 f0 T i T*(t)u d t =  ~mt0,Tl * u 

holds. We claim that 

313 

It follows that 

Hence 

XE(Z + t, y) = O, 

From this it is clear that also 

XE(Z + t, y) = O, 

f~ /rXE(X +t,u) dt dM(x,U) = 0. 
xK 

mt0,T1 ® Ivl - a . e .  

Since by assumption 

m[0,T] ® u - a.e. 

Rewriting this in terms of convolution, this is the same as (m[0,T] * u)(E) = O. 

Our claim is proved. By now we have shown that 

T*(t)u dt << m • M- 

lim I f0 T TJ, O T T*(t)u dt = u 

strongly and since obviously {# : # << m*[u[} is closed, it follows that u << m*[u[. 

STEP 2: We claim that m * [u[ = m ® r[u[. Let 7r : R × K ---, K be projection 

onto the second coordinate. We claim that the following equality holds: 

xK f o r d [ u [ =  jKf d~l~[. 
Indeed, by the Riesz Representation Theorem the linear functional on C(K) 

defined by 

f ~ f R × K f  °Tr d[v] 

m[o,Tj * =' << m * Iv]. 

Indeed, let E be measurable such that  (m* Ivl)(E)  = 0. This means by definition 

that 
g *  

J~/×K JR / xe(= + t,~) dm(O dl"l(x,  y) = o. 
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is represented by some # E C(K)* and it is straightforward to check that # = ~r[v[. 

This proves the claim. 

For A C R x K measurable, put 

Ay, :=AN{(x,y) E R x K :  Y=Yl}. 

Using our claim and the translation invariance of the Lebesgue measure m we 

see  

t t 
(m * [vl)(A ) =/Rxg JR XA(X + t,y) dm(t) dlv](x,y ) 

m(A - dJvl(x, v) 
= f~×g 

= f ~ x g  m(A)v d]v](x,y) 

re(A), d JvJ(v) 

= /K f XA(t,y) dm(t) &r]vl(Y) 

= xA(*, v) d(m ® y) 

= (m ® 7rlv[)(A ). 

This shows that  m * Iv[ = m ® 7rig [. Combining this with Step 1 we see that 

u << m ® ~r[u[ as was to be proved. | 

Second proof of Theorem 2.2: Let X be an arbitrary Banach space. By the 

Banach-Alaoglu theorem the dual unit ball K := Bx* is weak*-compact. The 

map i : X ~ C(K) defined by ix(x*) = (x*,x) is an isometric embedding. 

Let ~: C0(R;X) ~ C0(R; C(K)) = Co(R x K) be the induced embedding. In 

this way we may regard C0(R; X) as a closed, translation invariant subspace 

of Co(R x K). Let y® E C0(R;X) ° .  We must show: y® E LI(R;X*).  By the 

extension theorem for adjoint semigroups [Ne], y® can be extended to an element 

v of C0(R x K)  ®. By Theorem 2.7 there is a density function g E LI(R x K, m ® 

~rlu[) = LI(R;LI(K, Ir[u[)) representing u. We claim that y® = (~')*u can be 

regarded as an element of LI(R;X*).  To see this, let f E C0(R; X) be arbitrary 
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and note that  

f f(~.) ,tv®(~.) = (~,o, f) = (~,,~(:)) 

= ~ ( ~ ( f ) ) ( v ) d r ( r )  = ~ g ( r ) ( ~ ( f ) ) ( r ) d r  

= Ja  g ( r ) i ( f ( r ) )  dr = J/R i*(g(~'))/(r) dr. 

Hence ye  can be represented by ~, defined by ~(t) := i*(g(t)). Since i*(g(t)) E X* 
for all t E R we see that ye  E L I (R ;X  *) and the claim is proved. | 

3. The Injective and Projective Tensor Product 

Throughout this section X and Z will denote non-zero Banach spaces. We assume 

either both to be real or complex. Z ® X denotes the algebraic tensor product 

(cf. [SI]). 

The r-norm on Z ® X, often called the p ro jec t ive  norm, is described most 

conveniently by its unit ball, which by definition is the convex closure of the set 

Bz ® Bx, where Bz and Bx are the unit balls of Z and X respectively. An 

analytic expression for the r-norm is given as follows: 

n n 

Ilull~ = inf{~--~. IIz, ll, I1~11 : u = ~ z~ ® ~},  
i=1 i=1 

u E Z ® X .  

The r-tensor product Z~,~X is the completion of Z ® X with respect to this 

norm. Sometimes it is denoted by Z~X. The standard example for the r-tensor 

product is the following. Let Z be a space LI(/~), where # is some positive 

measure and X an arbitrary Banach space. Then L I ( # ) ~ X  can be identified 

in a canonical way with the space LI(It, X) of all X-vaiued Bochner integrable 

functions. 
12 

A n  e l e m e n t  u = E i = l  zi ® x i E z @ x c a n  (algebraically) b e  i d e n t i f i e d  w i t h  

an operator Tu E / : ( Z * , X )  by the formula 

n 

T.z*= 
i=1 

The e- or in jec t ive  norm on Z ® X is the norm induced by the operator norm 
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n on £(Z*,X). Thus for u = ~-~i=1 zi ® xi the e-norm is given by 

Ilull  = sup  z * , z , ) x ,  : IIz*ll -< x 

= s u p  : IIz*ll _< 1 , l lz*l l  _< / . 
k i=1 

The completion of Z ® X with respect to this norm is denoted by Z ~ , X .  It is 

called the e- or injeetive tensor product of Z and Y. Some authors denote it by 

Z ~ X .  The standard example is as follows: let Z := C0(O), f~ locally compact 

and X be an arbitrary Banach space. Then Co(f~)~,X can be identified with 

It is well-known that dual spaces of tensor products can be identified with 

certain operator ideals. For u* E (Z@~X)* or u* E (Z@~X)*, define Tu. E 

£(Z,X*) by 
12 

(U*,U) = ~(Tu*zi,xi l ,  
i=1 

where u = ~'~/~=1 zi ® xi E Z ® X. In particular, the dual of Z@~X can be 

identified with the space £(Z,  X*). On the other hand, the dual of Z~eX can be 

identified with the set of all in tegra l  operators Z ~ X* [DU], which we denote 

by Ci(Z,X*). 
A bounded linear operator T E £(Z)  induces a linear operator T®id : Z ®X 

Z ® X by the formula 

(T ® id)(z ® x) := Tz ® z. 

The operator T ® id is bounded for both the ~- and the rr-norm. In fact, in both 

cases one has liT ® idll = IITII. The unique continuous extensions to Z ~ X  and 

Z@~X will be denoted by T@~id and T@,~id respectively. 

LEMMA 3.1: a ( T ~ i d )  = a(T@~id) = a(T). 

Proof." We prove a slightly more general result: Suppose II" II is a reasonable 

crossnorm (in the sense of [DU; Def. VIII.I.1]) on Z ® X with the additional 

property that  every bounded linear operator T : Z ~ Z extends to a bounded 

linear operator T~id  on the completion Z ~ X  of Z ® X with respect to II " II- 

Then a(T~id)  = a(T). 
a(T@id) C a(T): Suppose ~ - T is invertible. Then (A - T ) - l ~ i d  is a 

bounded operator on Z@X and it is obvious that on the dense subspace Z ® X, 
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( A  - T) -1 ® id is a two-sided inverse for A - (T ® id). By density it follows that  

(A - T)- l@id = (A - (T~id)) -1, so A e e(T~id). 

a(T) C a(T~id):  Suppose A E a(T). If A E aap(T), the approximate point 

spectrum of T (cf. [Na]), then by definition we can choose an approximate 

eigenvector (z,,),~__l, i.e., Ilz,,ll = 1 for all n and 

lira I l T z , ,  - )~z,,ll  = o .  

We claim that (z, ®x)~= 1 is an approximate eigenvector of T~id  for every norm-1 

vector x E X. Indeed, we have Iiz,, ® z]l = IIz,,ll llzll = 1 and moreover 

]](T@id)(zn ® x) - A(z,, ® x)] I = ]I(Tz,, - Azn) ® xi] 

= IITz,, - Az.]l IIxll ---* o, n "---~ O O .  

Thus A E a(T~id) .  If A E a(T)\aav(T) then the range of A - T cannot be dense. 

According to the Hahn-Banach theorem, A E av(T* ). Choose a norm-1 vector z* 

such that  T'z* = Az*. We claim that ), E ap((T~id)*) with eigenvector z* ® x*, 

where x* # 0 is arbitrary in X*. Indeed, for any z @ x we have 

((T6id) '(z* ® z*),z ® z) = (z* ® z*,Tz ® x) 

= (z* ,  T z ) ( x * ,  

= 

= A ( z * , z ) ( x * , x )  

= ~(z  * ® z * , z  ® z) .  

The claim now follows from a density argument. Hence A E a((T@id)*) =- 

a(T~id) .  The second inclusion is proved and the lemma follows. I 

Given a strongly continuous semigroup To(t) on Z with generator A0 then 

T(t) := To(t) ® id extends to a one-parameter semigroup of bounded linear op- 

erators on Z@eX and Z~, tX respectively. In fact it is easy to see that it is 

strongly continuous as well. Moreover, spectrum and resolvent can be described. 

We state these facts in the following proposition, in which ~ denotes either the 

~- or the r-tensor product. 
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PROPOSITION 3.2: T(t) is a strongly continuous semigroup. If  we denote its 

generator by A then a(A) = a(Ao). For A in the resolvent set we have R(A,A) = 

R( A, Ao )~ id. 

Proof." By the spectral mapping formula (cf. [Na]) we have 

a(R(A, A0))\{0} = (A - a(Ao)) -1 

and similarly for A. Hence, to prove the first assertion, we see that it suffices 

to show that a(R(A,A)) = a(R(A, Ao)~id), but this follows from the previous 

lemma. The second assertion is obvious (e.g. apply a density argument). | 

Our next aim is to give a description of the adjoints of T(t) and R(A, A). In 

order to do this, we identify the dual spaces of Z ~ X  and Z ~ X  with £ ( Z , X * )  

and f~i(z, X*) respectively. Given a bounded operator on Z, we want to deter- 

mine the adjoint of S~id,  where ~ is either ~ or ~ .  Given z ® x E Z ® X and 

R E £ (Z ,X*)  or R E £i(Z,X*) ,  then 

(R, (S~id)(z  ® x)} = (R, (Sz) ® x} = (RSz, x) = (RS, z ® x). 

This shows that we have (S¢~id)*(R) = RS. We summarize this observation in 

the following proposition. 

PROPOSITION 3.3: The adjoint operators T*(t) and R(A,A)* : £(Z ,X*)  --~ 

£( Z, X* ) are given as follows : 

T*(t)(S) = STo(t), S E £(Z,X*) ;  

R(A,A)*(S) = SR(A,Ao), S E £(Z,X*) .  

The same assertions are valid for the ~e tensor product, with/:(Z,  X*) replaced 

by O(z,x*). 

Let us recall that the integral operators form a two-sided operator ideal, i.e. 

given R E ~ i (Z ,X*)  and bounded linear operators S1 E £(Z)  and $2 E £:(X*) 

then $2 o R o Sl is integral as well and [[$2 o R o Sxl[i _< [[$2[[. [[R[[i. [[Sl[[. Here 

I[" Hi is the norm induced by (Z@,X)*. 

Both dual spaces £(Z ,X*)  and £i (Z ,X*)  contain Z* ® X* as a subspace. In 

order to identify the closure of Z* ® X* with appropriate subspaces of £(Z,  X*) 

and £ i (Z ,X*)  respectively we make for the rest of Section 3 the following as: 

sumption: 
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ASSUMPTION 3.4: Z* has the approximation property (a.p.). 

The classical Banach spaces tp, C0(fl), LP(#) satisfy Assumption 3.4. Z* hav- 

ing the a.p. implies that the closure of Z* ® X* in L i ( Z , X  *) can be identified 

with Z*@~X*. Operators belonging to this closure are called nuc lea r  opera -  

tors .  Moreover, since Z* has the a.p., so does Z [DU]. The latter implies that 

the closure of Z* @ X* in L(Z,X*) ,  which is Z * ~ X * ,  is precisely the set of all 

compact operators from Z into X*. 

Now we are going to show that in case of sun-reflexivity the sun-dual of the 

e-tensor product can be described easily. We already noted in section 1 that a 

semigroup is sun-reflexive if and only if the resolvent of the generator is weakly 

compact. 

THEOREM 3.5: Let Z be sun-reflexive with respect to To(t). Then the sun-dual 

of the semigroup T(t) induced on Z ~ X  is the closure in Z * ~ . X *  of Z ® ® X*. 

Proof: Given z* E Z* and x* E X* then T*(t)(z* ® x*) = (T~(t)z*) ® x*. It 

follows that 

[[T*(t)(z* ® x*) - z* ® z*[[ = ][(T;(t)z* - z*)l [ • ][x*][. 

This shows that if z* E Z 0 then z* ®x* E (Z~eX)  ®. Hence also the closed linear 

subspace of Z * ~ X *  generated by {z* ® x* : z* E Z®,x * E X*} is contained in 

To prove the reverse inclusion, we first claim that ( Z ~ X )  ® C Z*~,,X*. For 

the rest of the proof we fix one )~ E o(A0). For S E (ZbeX)* = L i ( Z , X  *) we 

have by Proposition 3.3 R(~, A)*(S) = SoR(.k, Ao). Since Z is sun-reflexive with 

respec t  to T0(t) ,  i t  follows that R(A, A0) is weakly  compac t .  F r o m  a t h e o r e m  of 

Grothendieck (see [DU, Thm VIII.4.12]) it follows that S o R(A, A0) is nuclear. 

Thus R(A, A)*(S) E Z*~,rX* and by Proposition 1.1 the claim is proved. 

Thus if we fix S E Li(Z,X*),  then for arbitrary ¢ > 0 there exist zi E Z*, 

xi E X* such that 
n 

llSo Ao) - ® =*11  < 
i=1 

It follows that  

II II S o R()~, A0) 2 - E R(A, Ao)*z~ ® x~ 
i=1 i 

i=1 i 
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Since R(A, Ao)*z* • Z ° it follows that R(A,A)*2(S) = S o R(A, Ao) 2 is in the 

closed linear subspace of Z*~,~X* generated by {z* ® x* : z* • Z ° , x  * • X*}. 

The conclusion now follows from Proposition 1.1. | 

We point out that the a'-tensor product is not injective, i.e. given a subspace 

Y of Z*, then in general Y ~ X *  cannot be identified with the closed linear 

subspace of Z*~,~X* generated by {y ® x* : y e Y, x* E X*}. There are special 

cases where this is true, e.g. if Y is complemented in Z* or if X is a C0(~)-space 

respectively. Thus we have the following corollary. 

COROLLARY 3.6: If  in addition Z ° is complemented in Z* or X = C0(~ ) ,  

locally compact, then ( Z ~ X )  ° = Z°G,~X *. 

If To(t) is a positive semigroup on a Banach lattice Z whose dual has order 

continuous norm, then by a result of de Pagter (to be published), Z ® is a pro- 

jection band in Z*. This applies in particular to the case Z = C0(~) and we 

obtain: 

COROLLARY 3.7: Suppose To(t) is a positive semigroup on Co(~). Then there 

exists a measure space (~, ~,/~) such that C0(fl; X) ° = LI(~; X*). 

Now we consider the case of the It-tensor product. We are looking for condi- 

tions, ensuring that the sun-dual of X@~Z can be identified with Z ® ~ X  *. In 

contrast to Theorem 3.5 now sun-reflexivity (weak compactness of the resolvent) 

is not sufficient as Example 3.10 below shows. If we require compactness of the 

resolvent however, then the sun-dual can be described in a nice way. 

THEOREM 3.8: Assume that the generator of the semigroup To(t) on Z has com- 

pact resolvent, then for the semigroup induced on Z ~ , X  we have (Z@~X) ° = 

Z O ~ X  *. 

Proof: As in the proof of Theorem 3.5 it can be shown that Z ° ~ , X  * is contained 

in the sun-dual of Z b ~ X .  To prove the converse inclusion we observe that 

R(A, A0) being compact implies that for ~ > 0 there exist zi E Z aald z* E Z* 

such that 

IIR(A, A0) - £ z ~  ® zill < e. 
i=1 
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Thus given S E £.(Z, X*) then 

i=1 

< elISIIIIR(A, Ao)II. 

It follows that R(A, A)*2(S) can be approximated with respect to the operator 

norm by elements of Z O ® X*. Since the operator norm induces the e-norm 

it follows that R()~,A)*2(S) E Z ° @ , X  * for every S E £(Z,X*) .  Then from 

Proposition 1.1 we can conclude that (Z~,~X) ° C Z®~eX *. | 

The case Z = LI(#) was already proved in [Pal]. On spaces C0(O), ~ locally 

compact, or spaces LI(#), a resolvent is weakly compact if and only it is compact 

(see [Pa2]). Therefore the following corollary is an immediate consequence of 

Theorem 3.8. 

COROLLARY 3.9: Assume that Z is either a space LI(#) or a space Co(12),O 

locally compact. If  the semigroup To(t) is sun-reflexive then 

( z @ . x ) *  = zo ,x *. 

In general weak compactness of the resolvent is not enough in Theorem 3.8, as 

the following example shows. 

ExampJe 3.10: Consider the semigroup of translations on Z = LP(R). For 

1 < p < oo we have LP(R) (~ = LP(R) * = L~(R) with 1/p + t /q  = 1 and the 

resolvent is weakly compact, Z being reflexive. Assuming that 

(LV(R)@,~X) ° = L~(R)@,X * = {T e £(LV(R), X*):  T is compact } 

then from Proposition 3.3 and Proposition 1.1 we conclude that S o R()~,A0) is 

compact for every S E f~(LP(R),X*). Choosing X = Lq(R) and S the identity 

on LP(R) shows that R(~, A0) has to be compact, which is not the case (for then 

-/to must have countable spectrum, but it is well-known that a(Ao) = iR). 

In case p = 1 the resolvent of the "translation group even fails to be weakly 

compact and the condusion of Theorem 3.8 again does not hold, as we will now 

show. | 
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THEOREM 3.11: If  To(t) is the translation group on L1(R) then LI(R;X)  o = 

BUC(R;X*). 

Proof" First we claim that R(,k, A0) is representable [Pall. For almost all s we 

h a v e  

F (R()k, Ao)f)(s) = e-Xt f ( s  + t) dt 

have 

~° e- A( t-S) X[s,oo ) = (t)f(t) dr. 
o o  

Define g :  R --. La(R) by (g( t ) ) ( s )  = e-XO-'>Xt,,oo)(t ). We have 

IIg(t)llL'(a> = e-xO-'>Xt , ,~>(t )  ds = e -x ( ` -~)  ds = 7" 
oo oo 

Since also g is continuous as a map R ~ LI(R), hence in particular strongly 

measurable, this shows that g E L°°(R;L~(R)) and our claim is proved. From 

Proposition 2.2 in [Pal] we deduce that L~(R;X) ° C L~(R;X*).  Let h E 

LI(R;X)  °.  We claim that h is continuous. Let Cn be any continuous function 

with compact support such that Cn(t) = 1 for all t E I-n,  n]. Clearly it suffices to 

prove that hen is continuous for all n. Since each hen is compactly supported and 

since obviously h E LI(R; X) ° implies h¢n E L~(R; X) °,  we may consider hen as 

an element of LI([-Nn,  Nn]; X)  ® for some Nn large enough. Since L I ([-Nn, Nn]) 

is (D-reflexive with respect to translation (see e.g. [HPh]) we have by Theorem 

3.9 that 

L ~ ( [ - N , , N , ] ; X )  ® = L~([ -N , ,Nn] )°~¢X * C C([ -N , , ,N~] )~X*  

= C ( [ - g . ,  N.]; X*). 

Hence hen E C([-Nn, Nn];X*). This proves that LI(R;X) ° C C(R;X*). But 

then we must have that actually h E BUC(R;X*): h is bounded as an element 

of L°°(R; X*), and uniformly continuous since otherwise the map t ~ T*(t)h is 

easily seen not to be norm-continuous. This shows LI(~; X) ® C BUC(I¢,; X*). 

The reverse inclusion holds trivially. | 

This theorem is the L 1-analogue of Theorem 2.2. Now in general it is not true 

that 

B U C ( R ;  X) = BUC(R)~,X 
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holds. In fact, any function in BUC(R)@¢X must have relatively compact range 

whereas it is easy to construct functions in BUC(R; C0(R)) not having relatively 

compact range. Just let f E C0(R) be any non-zero function. Then the set of 

translates { T ( t ) f :  t E R} is not relatively compact, so by defining F(t) = T ( t ) f  

we obtain an F E BUC(R; C0(R)) which does not have relatively compact range. 

Remark 3.12: (a) The above examples show that for translation on Z = LP(R), 

1 _< p < oo the conclusion of Theorem 3.8 does not hold for every X. 

In fact, let Z be any fixed Banach space and let To(t) be a C0-semigroup 

on Z with generator A0. We claim that if for every X the formula ( Z ~ X )  ¢ = 

Z°@eX * holds, then R(A, Ao)must  be compact. Take X = Z*. Let X = Z* and 

assume (Z@~X) o = Z ¢ ~ X  *. Then R(A,A)*(T) = T o R(A, Ao) is a compact 

operator for every T E (Z@~X)* -- £(Z,  X*) -- L:(Z, Z**). In particular, letting 

T : Z ~ Z** be the canonical embedding, it follows that R(A,Ao) itself is 

compact. See also [Pall, where X = l °° is taken. 

(b) Concerning 3.5 the situation is different and weak compactness of R(A, A0) 

is not necessary in order that (Z@,X)  ® = Z 0 ® X * z ' ~ ' x "  holds for every Ba- 

nach space X. In fact, an inspection of the proof of Theorem 3.5 shows that a 

necessary and sufficient condition for this is that T o R(A, A0) is nuclear for every 

operator T E £i(Z, X*). An example of a semigroup without weakly compact 

resolvent but satisfying this condition (by Theorem 2.2 !) is translation in C0(R). 

By combining 3.5 and 3.8 one can under suitable assumptions describe the 

bi-sun-dual of the e- and the ~'-tensor product. In order to apply 3.5 and 3.8 we 

formally need the assumption that Z O* has the a.p. The proof below however 

shows that it suffices to have that Z* has the a.p. | 

For L 1 (p)~,~X the following result was first proved by de Pagter (unpublished). 

PROPOSITION 3.13: Suppose R( )~, Ao ) is compact. Then: 

(i) (Z~,~X) ®® is the closure in Z¢*~,~X ** of Z ® X**. If either Z is com- 

plemented in Z ®* or X is an Ll(#)-space then (Z~,~X) ®® = Z~,~X**. 

(ii) If  either Z ® is complemented in Z* or X = Co(~)), ~ locally compact 

Hausdorff, then ( Z ~ X )  ° ¢  = Z ~ X * * .  

Proof: First we prove (ii). By Corollary 3.6 we have ( Z ~ X )  o = Z ® ~ X  *. 

The conclusion now follows from Theorem 3.8 in case Z °* has the a.p. However, 

inspection of the proof of Theorem 3.8 shows that the a.p. was needed for 

showing that R(A, A0) could be approximated by finite rank operators in the 
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uniform operator topology. Hence what we must show in the present case is that 

R(A, A°o ) can be approzimated by finite rank operators. That this is true when Z* 

has the a.p., i.e. under Assumption 3.4 (regardless whether Z °* has the a.p.), is 

shown by the following argument. Fix I 6 o(Ao). Since Z* has the a.p., R(A, A0) 

is the uniform limit of finite rank operators q~, 6 Z* ® Z. Then for # 6 ~(A0), 

R(A, Ao)R(/z, Ao) is the uniform limit of CnR(/z, Ao). Since R(#, Ao)*Z* C Z ° 
it follows that ~,R(/t ,  Ao ) 6 Z 0 ® Z. Moreover, 

is surjective. 
inclusion map 

]IR(A, Ao )* R(14 Ao )* - ( O nR(~t, A0))*ll = IIR(/~, Ao )R( A, Ao ) - #~ ,R(t,, A0)ll, 

hence #R(A,A°o)R(/z,A°o) = IzR(A, Ao)*R(p, Ao)*Izo is the uniform limit of 

I~,R(#,Ao)*lzo 6 Z ® Z + C Z+*® Z °.  Since 

R(A, A0 ° )  = lim I~R(A, A°o)R(#, A°o) 
pt ---*OO 

in the uniform operator topology (this follows from the resolvent equation for 

A0°), we can conclude that R(A,A°o) can be approximated by finite rank opera- 

tors. As we noted above, from these considerations we can conclude that 

= z+O  x **, 

and since R(A, A0) is compact we have Z ° °  = Z, and (ii) is proved. 

The first assertion of (i) is proved by a similar argument. Now suppose that Z 

is complemented in Z O*. Then trivially every T E £(Z, X*) admits an extension 

to an operator in £(Z°*,X*) .  Also, if X is an Ll(/~)-space, then X* is injective 

[LT] and this again implies that every T 6 £(Z,X*)  admits an extension to an 

operator in £ ( Z  ®*, X*). In other words, in either case the natural map (induced 

by restriction ~r : Z O* --+ Z) 

: £ ( z + * , x  ") -+ z . ( z , x*)  

But since £(Y,X*) = (Y@,,X)* this shows that  the canonical 

j : Zb,X -* Zo*~.X 

is an embedding. Applying this to X** instead of X (and noting that X*** is 

an Ll(/j)-space if X* is) we obtain that Z6,,X** can be regarded as a dosed 

subspace of Z®*@,rX ** and this proves the second assertion. | 
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4. The ~-Tensor Produc t  

It is not possible to identify the space LP(~;X),  1 < p < c~, with either a 

¢- or a r-tensor product. In this case the so-ca/led/-tensor product solves the 

problem. It was introduced about 1970 by Chaney, Fremlin, Levin and Schaefer 

[Ch, Frl,  $3]. In order to define it, first of all one has to introduce the class of 

cone absolutely summing operators. The following result is taken from [$2, IV.3]. 

PROPOSITION 4 . h  Let Z be a Banach lattice, X a Banach space. For a bounded 

linear map T : Z ~ X the following are equivalent: 

(i) 3C > 0 such that for every 0 <_ f l ,  . . . , f ,  6 Z, ~i~=, liT/ill ___ eli fill; 

(ii) For every positive sequence (fi) in Z such that E i~ l  fi converges, the sum 

E ~ ,  IITfill converges; 

(iii) There is an Ll(/z)-space such that T admits afactorization Z T4 LI(#) ~ X 

with T~ > O; 

(iv) 3 0 _< ff 6 Z* such that for a/l f E Z, tlTfll _< <¢, Ifl); 

(v) The set {T'x* : IIx*ll _< 1} is order bounded in Z*. 

Definition 4.2: T : Z ~ X is called cone  a b s o l u t e l y  s u m m i n g  (c.a.s.) if one 

of the equivalent assertions of Proposition 4.1 is satisfied. The set of all c.a.s 

operators is denoted by f t ( Z , X ) .  For T 6 £t (Z ,X)  define 

IITII, := inf{C : (i) in Proposition 4.1 holds with constant C}. 

£:t(Z, X)  is a Banach space and contains the finite-rank operators. If X is a 

Banach lattice then £1(Z, X)  is a Banach lattice as well. 

The l -nuclear  operators Aft(Z, X)  are defined as the closure of the finite rank 

operators in £t(Z, X). 

As a subspace of f ( Z , X ) ,  £ t (Z ,X)  has the following idea/property:  given 

T 6 f f l (Z,X),  R E £(X)  and S 6 £(Z) such that its modulus IS I exists, then 

R o T o S 6 £t(Z, X)  and 

[JR o T o Silt < ][R[[ [[Tilt 1[ IS[ 11. 

n , Let u = ~n=l  zi ® xi. By the formula Tu z* := ~-'~i=~ (z , zi)xi we regard Z ® X 

as a linear subspace of f / (Z* ,X) .  On Z ® X we define the / -no rm II-tl, to 

be the norm induced by ffl(Z*,X). The Banach space Z ~ t X  is defined to be 

the completion of Z ® X with respect to the/-norm. In this way Z ~ t X  can be 

identified with the closure of Z ® X in the space £t(Z*, X). 



326 G. GREINER AND J. M. A. M. VAN NEERVEN Isr. J. Math. 

In this way Z*~tX can be identified with the closure of Z* ® X in £~(Z**, X).  

Now elements u = ~ = 1  z~ ® xi E Z* ® X can also be identified with an operator 

T,  : Z --0 X (rather than Z** ---* X),  by 

n 

= 

i = 1  

The following proposition states that indeed Z*~tX becomes in this way the 

closure of Z* ® X  in £t(Z, X). In fact, the £}(Z, X)-closure of Z* ® X  is precisely 

Aft(z,x). 

PROPOSmON 4.3: Z*~tX can be identit~ed isometrically with AfI( Z,X).  

Proof." By definition, Aft(Z,X) is the closure of the finite rank operators in 

/~t(Z, X).  Regarding a finite rank operator Z --* X as an element of Z* ® X 

as above, we see that Aft(Z, X)  is the closure of Z* ® X in £t(Z,  X). On the 

other hand, by definition Z*~tX is the £t(Z**, X)-closure of Z* ® X. Therefore 

it suffices to show that the £ t (Z ,X) -norm and the £ t (Z** ,X)-norm agree on 

Z* ®X.  To this end, let u E Z* ® X  be given. On the one hand, we can consider 

u as a c.a.s, map T, : Z** ~ X. This map is also c.a.s, as a map Z** ~ X** 

and 

IIT.Ht,(z..,x) = ][T.[]~,(zoo,x.°). 

On the other hand we may regard u as a c.a.s, map T. : Z --* X. In this case 

T*" : Z** ~ X** is c.a.s. [S2, IV Cot. 3.8] and 

But clearly as maps Z** ~ X** we have T, = T**, so combining the two above 

equalities gives the desired result, i 

The map j : LP(/~) ® X --* LP(/~; X),  1 _< p < oo, defined by j ( f  ® x)(t) = 

f ( t )x  extends to an isometric isomorphism from LP(I~)~tX onto LP(/~; X).  In a 

similar way one has Co(fl)~tX = C0(Q; X). This is summarized in the following 

proposition [S2, IV.7 Examples 1,4]. 

PROPOSITION 4.4: One has LP(/~; X) = LP(Iz)~tX, 1 < p < oo, and C0(~; X)  = 

c0(n) tx. 
One of the surprising properties of the/- tensor  product is that the dual is given 

by the same class of operators which is used to define it (the l-norm is 'self-dual'). 
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More precisely, one has [$2, IV.7.4] 

327 

(zStx)* = z*(z, x*). 

Now we want to describe the sun-dual of Z ~ t X  with respect to semigroups 

induced by a semigroup on one of the factors. Since (in contrast to the ¢- mid 7r- 

tensor prodtict) the/ - tensor  product is not symmetric (even when X is a Banach 

lattice as well) we have to distinguish the two cases where To(t) is given on Z or 

o n  X .  

First we consider the case where we are given a C0-semigroup To(t) on X with 

generator A0. As in Section 3, id®T0(t) := idz®To(t) extends to a C0-senfigroup 

on Z~tX .  

THEOREM 4.5: Each of the following conditions implies ( Z~ IX)  0 = Z*@IX° : 

(i) R(A, Ao) is compact; 

(ii) R(A, Ao ) is weakly compact and Z does not contain a sublattice isomorphic 

to t 1 . 

Proof: The inclusion D can be proved as in 3.5. 

For T E £t(Z,X*) one has as in Proposition 3.3 that 

R(A,A)*(T) = R(A, Ao)* o T. 

Hence to prove the converse inclusion by Proposition 4.3 we have to show that 

R(A, Ao)* o T is/-nuclear as a mapping Z -* X O. 

(i) Since T : Z ~ X* is c.a.s, by Proposition 4.1(iii) T has a factorization 

z 5 z 5 x 

with T1 _> 0. Hence R(A,A0)* o T factorizes as 

z 5 L'(,) 5 x, 

with T~ = R(A, Ao)* o T2 compact and taking values in X ° .  Thus by [S2, Prop. 

IV.8.2] R(A, A0)* o T : Z ~ X O is/-nuclear. 
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(ii) By a result due to Schlotterbeck-Lotz (personal communication), if Y 

is reflexive and Z contains no sublattice isomorphic to gl, then Afl(Z,Y) = 

£t(Z, Y). Since by assumption R(A, A0)* : X* --* X ° is weakly compact, by 

a well-known result of Davis-Figiel-Johnson-Pelczynski [DFJP] there exists a 

reflexive space Y such that R(A, A0)* admits the factorization 

X* - ~  Y R2 XO" 

Since T is c.a.s., the operator R1 o T : Z ~ Y is c.a.s, as well and we conclude 

that R1 o T is/-nuclear. Then R(A, Ao)* o T = R2 o R: o T is/-nuclear as well. 

| 

Note that both Z = C0(~) and Z = LP(p), 1 < p < oo do not contain gl as a 

sublattice. 

Now we will discuss the case where we are given a C0-semigroup To(t) on Z. 

In general for a bounded linear operator T on Z, the operator T ® id does not 

admit an extension to a bounded operator on Z@zX. If however T possesses a 

modulus ITh then the extension exists and 

IIT6tidll II ITI II, 

Therefore in order to be sure that To(t)® id admits an extension to a C0- 

semigroup T(t) = T0(t)@tid of bounded operators on Z~tX,  we will assume that 

To(t) is a positive semigroup (see [Sa D. Then for A sufficiently large R(A, A0) is 

positive, hence R(A, A0)®id extends to a bounded linear operator on Z~IX.  One 

easily shows that this extension equals R(A, A), the resolvent of the generator A 

of T(t). Similarly as in Proposition 3.3 one has that R(A, A)* considered as an 

operator on £t(Z, X*) = (Z61X)* is given by 

R(A,A)*(T) = T o R(A, Ao). 

In order to be able to identify (Z@tX) ° with Z ° ~ X  * we need a certain com- 

pactness property of R(A, A0) which we will describe next. 

Definition 4.6: An operator T E £(Z) is called r-compact if its modulus [T[ 

exists and there is a sequence of finite rank operators q~, E Z* ® Z such that 

.limoo II IT - [I = O. 
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The adjoint of an r-compact operator is r-compact again. Since [[T[[ < [[ IT[ [[, 

every r-compact operator is compact. In case Z = LI(#) or Z -- C0(f/) the 

converse is true (see [$2]). For Z = L2(#) the situation is different. In [Fr2] an 

example is given of a positive compact operator on L2(p) which is not r-compact. 

However, in L2(#) every Hilbert-Schmidt operator is r-compact. 

Note that a sufficient condition for r-compactness for a positive T is the exis- 

tence of a positive sequence (I,, of finite rank operators satisfying 0 < (1), < T 

and ]IT - ~,[[ --~ 0. This is a convenient criterion to check, e.g., whether kernel 

operators are r-compact. 

THEOREM 4.7: Suppose To(t) is a positive Co-semigroup on a Banach lattice Z 

whose resolvent R(A, Ao) is r-compact for sufficiently large A. Then ( Z@tX) 0 is 

the closure in Z*@IX* of Z 0 ®X*. If Z 0 is a sublattice of Z* then ( Z b t X )  0 = 

ZO~tX  *. 

Proo£" As before, we will show that R(A,A)2*(£)(Z,X*))  C s~'~(Z ° @ X*), 

the closure taken in Z*@tX*. By assumption there are finite rank operators (I), 

satisfying I[ [R(A, A0) - ¢ , [  [[--* 0. Given T • £ t (Z ,X*)  it follows that 

][R(A,A)2*(T) - T o  ¢ ,  o R(A, A0)llt = [[To (R(A, A0) - ~ , )  o R(A, Ao)[[, 

_< lIT[I, [[ [R(A, A0) - ¢,,1 [[ [[R(A, A0)[[ 

--*0. 

Moreover if ~ ,  = ~_.i~=1 z*®z, then T o ~ , o R ( A ,  A0) = ~ ,~1  R(A, Ao)*z* ®Tz, e 

Z O ® X* and the first part of the theorem is proved. The additional statement 

is a consequence of the left-injectivity of the/- tensor  product in the sense that if 

Z1 is a sublattice of Z2, then ZI@IX can be identified with a closed subspace of 

Z~@zX (see [S2]). m 

By the result of de Pagter mentioned after 3.6, the second statement of 4.7 

applies to the case where Z* has order continuous norm. 

COROLLARY 4.8: Suppose Z is a Banach lattice with Z* having order continuous 

norm and let To(t) be a positive semigroup on Z. If R(A, A0) is r-compact/or 

sufficiently large A, then (Z@tX) ° 0  = Z@tX**. 

Proof: Since R(A, Ao) is r-compact, hence compact, we have Z °O -- Z. Now 

since Z* has order continuous norm, by the result of de Pagter Z ° is a projection 



330 G. GREINER AND J. M. A. M. VAN NEERVEN Isr. J. Math. 

band in Z*. Hence we can apply Theorem 4.7 to find that (Z~IX) ° = Z®~IX *. 
Moreover, the canonical embedding Z ~ Z O* factorizes as Z ~ Z** ~ Z O* 

where the second map is the adjoint of the inclusion map i : Z O ~ Z*. But 

since Z ° is a band, i* is a lattice homomorphism. Combining this with the 

embedding Z ~ Z** it follows that Z °O = Z is a sublattice of Z O*. Hence we 

can apply 4.7 to the positive semigroup To°(t) on Z e. Note that this semigroup 

has r-compact resolvent as well. Indeed, R(A, A0)* : Z* ~ Z* is r-compact and 

Z O is complemented in Z* by a positive projection. | 

Weak compactness is not sufficient for the conclusion of Theorem 4.7 to hold: 

take any uniformly continuous semigroup on LV(#), 1 < p < oo and note that  in 

general LP(p; X)* = (LV(#)~,X) * # Lq(p)~lX * = Lq(#; X*). 

Remark 4.9: An inspection of the proof of Theorem 4.7 shows that the as- 

sumption of r-compactness of the resolvent can be weakened to the following 

assumption: T o R(A, Ao) is l-nuclear/'or every T 6 £Z(Z, X*). This condition 

is satisfied when e.g. Z = LP(#) (1 < p < oo) and the resolvent R(A, A0) is 

represented by a positive measurable kernel k, i.e., 

(n()~, Ao)f)(x) = f k(x, y)f(y) d#(y) for  /~-a.a. x,  

where k satisfies the condition 

sup / k(x, y)q dp(y) < (20, 
1 1 
- + - = 1 .  
P q 

This can be s e e n  as follows. If T e £Z(LP(p),X*) then by 4.1(iv) there exists a 

function ¢ 6 Lq(#), ¢ >_ 0 such that  IITf[I <_ (¢, Ill/ for all f 6 LP(#). Thus 

T has an extension to a bounded operator on Ll(¢d#),  which we denote by TI. 

Let i :  LP(#) ~ Ll(¢dp) be the canonical embedding. Then iv  R()%Ao)is also 

represented by k. In order to show that i o R()% A0) is/-nuclear we have to verify 

that k 6 Lq(#)@lLl(¢dl 2) = Lq(#; Ll(¢dp)). By Jensen's inequality, 



Vol. 77, 1 9 9 2  SEMIGROUPS ACTING ON FUNCTION SPACES 331 

Thus k E Lq(p; Ll(¢d/~)) and hence ioR(A,  Ao) is/-nuclear. Then ToR(A, A0) = 

T1 o i o R(A, A0) is/-nuclear as well. 

This criterion can be used for the translation group on LP(R) (1 < p < oo). In 

this case R(A, A0) is given by 

i 
o o  

(R(A, Ao) f ) ( x )  = ex(~-~)f(y) dy, 

so k(x, y) = eX(X-Y)X(x,¢¢ ). Hence for each x, 

] f  1 
~(z, y)q dy = e xq(~-~) dy = ~. 

Therefore we obtain: 

THEOREM 4.10: Let To(t) be the translation group on LP(R), 1 < p < oo. Then 

gP(a; X) o = L,(R; X*). 

This example shows that the criterion from Remark 4.9 is weaker that the one 

of Theorem 4.7: for the translation group on LP(R) the resolvent is not compact 

and therefore certainly not r-compact. 

We close with an application of Theorems 4.5 and 4.7 to vector valued LP(#) - 

spaces. 

THEOREM 4.11: Consider a space LP(I~), 1 < p < oo, and an arbitrary Banach 

space X .  

(i) Given a Co-semigroup To(t) on X which is sun-reflexive, then the induced 

semigroup on LP(#; X )  is sun-reflexive as well. Moreover, 

LP(~,X) o = Lq0,; X ° ) .  

(ii) Given a positive Co -semigroup on LP ( t z) with r-compact resolvent, then for 

the semigroup induced on LP(/z;X) we have LP(/~;X) ° = Lq(p;X*) and 

LP(~; X) oo  = LP(~; X**). 

Proo£" (i) ~1 does not embed into the reflexive space Lp(#). (ii) Since Lp(#) is 

reflexive, L ' (# )  ° = Lq(#) is a sublattice of Lq(/~). | 
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