ADJOINTS OF SEMIGROUPS ACTING ON VECTOR-VALUED FUNCTION SPACES

ΒY

G. GREINER*

Universität Tübingen Auf der Morgenstelle 10, D-7400 Tübingen, Germany

AND

J. M. A. M. VAN NEERVEN

Centre for Mathematics and Computer Science P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

ABSTRACT

Let T(t) be the translation group on $Y = C_0(\mathbb{R} \times K) = C_0(\mathbb{R}) \otimes C(K)$, Kcompact Hausdorff, defined by T(t)f(x, y) = f(x + t, y). In this paper we give several representations of the sun-dial Y^{\odot} corresponding to this group. Motivated by the solution of this problem, viz. $Y^{\odot} = L^1(\mathbb{R}) \otimes M(K)$, we develop a duality theorem for semigroups of the form $T_0(t) \otimes id$ on tensor products $Z \otimes X$ of Banach spaces, where $T_0(t)$ is a semigroup on Z. Under appropriate compactness assumptions, depending on the kind of tensor product taken, we show that the sun-dial of $Z \otimes X$ is given by $Z^{\odot} \otimes X^*$. These results are applied to determine the sun-dials for semigroups induced on spaces of vector-valued functions, e.g. $C_0(\Omega; X)$ and $L^p(\mu; X)$.

Introduction

Suppose μ is a complex Borel measure of bounded variation on \mathbb{R} . For $t \in \mathbb{R}$ define the measure μ_t by $\mu_t(A) = \mu(A + t)$. Then a classical theorem due to Plessner [Pl] states that $\lim_{t\to 0} \|\mu - \mu_t\| = 0$ if and only if $\mu \ll m$, where m

^{*} This paper was written during a half-year stay at the Centre for Mathematics and Computer Science CWI in Amsterdam. I am grateful to the CWI and the Dutch National Science Foundation NWO for financial support. Received August 16, 1990

denotes the Lebesgue measure on \mathbb{R} . In Section 2 of this paper we derive the following analogue of this result for vector-valued measures: let X be a Banach space and let μ be an X-valued Borel measure of bounded variation on \mathbb{R} , then $\lim_{t\to 0} \|\mu - \mu_t\| = 0$ if and only if $\mu \in L^1(\mu; X)$. By the Radon-Nikodym theorem, the case $X = \mathbb{C}$ reduces to Plessner's theorem.

In case $X = Y^*$ is a dual space, this result can be restated in terms of the translation group in the following way: if T(t) denotes the translation group on $C_0(\mathbb{R}; Y)$ then $L^1(\mathbb{R}; Y^*)$ is the maximal space of strong continuity of the adjoint $T^*(t)$ of T(t). Now both $C_0(\mathbb{R}; Y)$ and $L^1(\mathbb{R}; Y^*)$ can be written as certain tensor products, namely $C_0(\mathbb{R}; Y) = C_0(\mathbb{R}) \tilde{\otimes}_{\varepsilon} Y$ and $L^1(\mathbb{R}; Y^*) = L^1(\mathbb{R}) \tilde{\otimes}_{\pi} Y^*$ (the injective resp. projective tensor product), whereas the translation group on $C_0(\mathbb{R}; Y)$ can be regarded as the tensor product $T_0(t) \otimes id$, with $T_0(t)$ denoting translation on $C_0(\mathbb{R})$. This suggests the following question:

Given two Banach spaces Z, X, a strongly continuous semigroup $T_0(t)$ on Z, with Z^{\odot} the maximal space of strong continuity of $T_0^*(t)$, when is it true that we have a formula like $(Z \otimes X)^{\odot} = Z^{\odot} \otimes X^*$?

Here $(Z \otimes X)^{\odot}$ is the maximal space of strong continuity of the adjoint of the induced semigroup $T_0(t) \otimes id$ on $Z \otimes X$. This question will be addressed in Section 3 for the injective and projective tensor product. These results can be applied to the vector-valued function spaces $L^1(\mu; X)$ and $C_0(\Omega; X)$. In order to treat also $L^p(\mu; X)$ for 1 we study in Section 4 the*l*-tensor product.

1. Adjoint Semigroups

In this section we will recall some of the standard results on adjoint semigroups. Proofs can be found in [BB, P]. Let $\{T_0(t)\}_{t\geq 0}$ (briefly, $T_0(t)$) be a C_0 -semigroup on a Banach space X. The **adjoint** $T_0^*(t)$ of $T_0(t)$ is the semigroup on X^{*} defined by $T_0^*(t) := T_0(t)^*$. From

$$|\langle T_0^*(t)x^* - T_0^*(s)x^*, x \rangle| \le ||x^*|| ||T_0(t)x - T_0(s)x||$$

one sees that the map $t \mapsto T_0^*(t)x^*$ is weak*-continuous for every $x^* \in X^*$. Hence if X is reflexive, then $T_0^*(t)$ is weakly continuous and therefore strongly continuous. However in general $T_0^*(t)$ is not strongly continuous and it makes sense to define the sun-dual X^{\odot} as the maximal subspace of X^* on which $T_0^*(t)$ acts in a strongly continuous manner:

$$X^{\odot} = \{x^* \in X^* : \lim_{t \downarrow 0} \|T_0^*(t)x^* - x^*\| = 0\}.$$

 X^{\odot} is a norm-closed, weak^{*}-dense subspace of X^* . In fact, one has

$$X^{\odot} = \overline{D(A_0^*)},$$

where A_0^* is the adjoint of the generator A_0 of $T_0(t)$; the closure is taken with respect to the norm-topology of X^* . Letting $R(\lambda, A_0) = (\lambda - A_0)^{-1}$ be the resolvent of $T_0(t)$, then $R(\lambda, A_0^*) = R(\lambda, A_0)^*$ and $D(A_0^*) = R(\lambda, A_0^*)X^*$. Clearly X^{\odot} is invariant under $T_0^*(t)$. By restricting $T_0^*(t)$ to X^{\odot} one obtains a strongly continuous semigroup on X^{\odot} , which we will denote $T_0^{\odot}(t)$. Let A_0^{\odot} be its generator, then one can show that A_0^{\odot} is precisely the part of A_0^* in X^{\odot} .

PROPOSITION 1.1: Let $k \ge 1$ and $\lambda \in \rho(A_0)$. Then $X^{\odot} = \overline{R(\lambda, A_0^*)^k X^*}$.

In fact, $R(\lambda, A_0^*)^k X^* = D((A_0^*)^k) \supset D((A_0^{\odot})^k)$ and the latter is norm-dense in X^{\odot} since A_0^{\odot} is a generator on X^{\odot} .

Starting from $T_0^{\odot}(t)$ one can repeat the duality construction and define $T_0^{\odot*}(t)$ and $X^{\odot\odot} = (X^{\odot})^{\odot}$. The canonical map $j: X \to X^{\odot*}$,

$$\langle jx, x^{\odot} \rangle := \langle x^{\odot}, x \rangle$$

is an embedding mapping X into $X^{\odot \odot}$. In case $jX = X^{\odot \odot}$ we say that X is **sun-reflexive with respect to** $T_0(t)$. It is well-known that this is the case if and only if $R(\lambda, A_0)$ is weakly compact [Pa2].

The spectra of A_0, A_0^* and A_0^{\odot} coincide, see e.g. [Na, A-III]. This will be used throughout this paper, as well as more or less obvious identities like $R(\lambda, A_0)^* x^{\odot} = R(\lambda, A_0^{\odot}) x^{\odot}$ ($x^{\odot} \in X^{\odot}$), etc.

2. Translation in $C_0(\mathbb{R}; X)$

Let X be a Banach space. On $C_0(\mathbb{R}; X)$ the translation group T(t) is defined by

$$T(t)f(s) = f(t+s), \qquad t \in \mathbb{R}.$$

In this section we prove in two different ways that the sun-dual on $C_0(\mathbb{R}; X)$ with respect to T(t) is given by $L^1(\mathbb{R}; X^*)$.

Let $M(\mathbb{R}; X)$ denote the Banach space of all countably additive X-valued vector measures of bounded variation [DU]. If X is the scalar field we simply write $M(\mathbb{R})$. For $\mu \in M(\mathbb{R}; X)$ its variation $|\mu| \in M(\mathbb{R})$ is defined by

$$|\mu|(E) := \sup_{\pi} \{\sum_{A \in \pi} \|\mu(E \cap A)\|\},$$

where the supremum is taken over all partitions π of \mathbb{R} into finitely many disjoint subsets. If $\mu \in M(\mathbb{R}; X)$ then $|\mu|$ is a finite positive measure in $M(\mathbb{R})$.

It is well-known (see [DU, pp. 181–182]) that the dual of $C_0(\mathbb{R}; X)$ may be identified with $M(\mathbb{R}; X^*)$ and we have

$$\|\int_{\mathbb{R}} f \ d\mu\| \leq \int_{\mathbb{R}} \|f\| \ d|\mu|, \qquad f \in C_0(\mathbb{R}; X), \qquad \mu \in M(\mathbb{R}; X^*).$$

The space $L^1(\mathbb{R}; X)$ can be identified with a closed subspace of $M(\mathbb{R}; X)$ in the following way: for $h \in L^1(\mathbb{R}; X)$ define $\mu_h \in M(\mathbb{R}; X)$ by

$$\mu_h(E):=\int_E h \ d\mu.$$

LEMMA 2.1: Suppose $\mu \in M(\mathbb{R}; X)$ and $f \in C(\mathbb{R})$ with $\lim_{t\to -\infty} f(t) = 0$. Define

$$F(r) := \int_{-\infty}^{r} f(s) \ d\mu(s).$$

Then F is strongly measurable.

Proof: In order to apply Pettis' measurability theorem [DS], we must show that (i) F is weakly measurable, and (ii) F is essentially separably-valued.

To prove (i) first let m be a measure in $M(\mathbb{R})$. Then \tilde{F} defined by

$$\tilde{F}(r) := \int_{-\infty}^{r} f(s) \ dm(s)$$

is measurable. (To see this, we may assume that μ and f are real-valued, split $f = f_+ - f_-$ and $m = m_+ - m_-$ and note that if f and m are **positive** then \tilde{F} is monotone, hence measurable). Using this we see that for any $x^* \in X^*$ the function

$$r \mapsto \langle x^*, F(r) \rangle = \int_{-\infty}^r f(s) \ d\langle x^*, \mu \rangle(s)$$

is measurable. This proves (i).

To prove (ii) define

$$F_1(r) := \int_{-\infty}^r |f(s)| \ d|\mu|(s).$$

Since F_1 is monotone, F_1 is continuous except at a countable set E. For $r_0 \notin E$, $r \in \mathbb{R}$ we have

$$||F(r) - F(r_0)|| = ||\int_{r_0}^r f(s) \ d\mu(s)|| \le \int_{r_0}^r |f(s)| \ d|\mu|(s) = |F_1(r) - F_1(r_0)|.$$

From this it follows that F is continuous as well on $\mathbb{R}\setminus E$. Since moreover $\mathbb{R}\setminus E$ is separable it follows that $F(\mathbb{R}\setminus E)$ is separable. This proves (ii).

THEOREM 2.2: If T(t) is the translation group on $C_0(\mathbb{R}; X)$ then $C_0(\mathbb{R}; X)^{\odot} = L^1(\mathbb{R}; X^*)$.

Proof: First we prove that $L^1(\mathbb{R}; X^*) \subset C_0(\mathbb{R}; X)^{\odot}$. Let $x^* \in X^*$ and $f \in L^1(\mathbb{R})$. Define $f \otimes x^* \in L^1(\mathbb{R}; X^*)$ by

$$(f \otimes x^*)(s) = f(s)x^*.$$

Since translation is continuous on $L^1(\mathbb{R})$ it is clear that $f \otimes x^* \in C_0(\mathbb{R}; X)^{\odot}$. Since the linear span of such functions is dense in $L^1(\mathbb{R}; X^*)$, the inclusion $L^1(\mathbb{R}; X^*) \subset C_0(\mathbb{R}; X)^{\odot}$ follows. We now prove the reverse inclusion. Let A be the generator of T(t). Since $C_0(\mathbb{R}; X)^{\odot} = \overline{D(A^*)}$ it suffices to prove the inclusion $R(\lambda, A^*)M(\mathbb{R}; X^*) \subset L^1(\mathbb{R}; X^*)$. For $f \in C_0(\mathbb{R}; X)$, $\mu \in M(\mathbb{R}; X^*)$ we have

$$\begin{split} \langle R(\lambda, A^*)\mu, f \rangle &= \langle \mu, R(\lambda, A)f \rangle = \int_{\mathbb{R}} \int_0^\infty e^{-\lambda t} f(s+t) \ dt \ d\mu(s) \\ &= \int_{\mathbb{R}} \int_s^\infty e^{\lambda(s-t)} f(t) \ dt \ d\mu(s) \\ &= \int_{\mathbb{R}} \int_{-\infty}^t e^{\lambda(s-t)} f(t) \ d\mu(s) \ dt \\ &= \int_{\mathbb{R}} f(t)F(t) \ dt, \end{split}$$

where

$$F(t) := e^{-\lambda t} \int_{-\infty}^{t} e^{\lambda s} d\mu(s).$$

We will show that $F \in L^1(\mathbb{R}; X^*)$. By Lemma 2.1, F is strongly measurable. But then we have

$$\begin{split} \|\int_{\mathbb{R}} F(t) \ dt\| &\leq \int_{\mathbb{R}} \|F(t)\| \ dt \\ &= \int_{\mathbb{R}} e^{-\lambda t} \|\int_{-\infty}^{t} e^{\lambda s} \ d\mu(s)\| \ dt \\ &\leq \int_{\mathbb{R}} \left[\int_{s}^{\infty} e^{\lambda(s-t)} \ dt\right] \ d|\mu|(s) \\ &= \frac{1}{\lambda} |\mu|(\mathbb{R}) < \infty. \end{split}$$

This proves that $F \in L^1(\mathbb{R}; X^*)$. But since we had

$$\langle R(\lambda, A^*)\mu, f \rangle = \int_{\mathbb{R}} f(t)F(t) dt$$

for all f it is clear that $F = R(\lambda, A^*)\mu$ and the proof is finished.

For $\mu \in M(\mathbb{R}; X)$ and $t \in \mathbb{R}$ we define $\mu_t \in M(\mathbb{R}; X)$ by $\mu_t(E) = \mu(E+t)$, where $E \subset \mathbb{R}$ is measurable. According to Theorem 2.2 we have, in case X is a dual space, that $\|\mu_t - \mu\| \to 0$ as $t \to 0$ if and only if $\mu \in L^1(\mathbb{R}; X)$. This easily extends to the case where X is an arbitrary Banach space.

COROLLARY 2.3: Let $\mu \in M(\mathbb{R}; X)$. Then $\lim_{t\to 0} ||\mu_t - \mu|| = 0$ if and only if $\mu \in L^1(\mathbb{R}; X)$.

Proof: Suppose $\|\mu_t - \mu\| \to 0$. Regarding μ as an X^{**} -valued vector measure, it follows from Theorem 2.2 that $\mu \in L^1(\mathbb{R}; X^{**})$. But since μ takes its values in X, the same must be true for the density function h_{μ} representing μ . In fact, by the Lebesgue differentiation theorem [DU, III. 12.8] we have, for almost all s,

$$h_{\mu}(s) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{s}^{s+\epsilon} h_{\mu}(\tau) \ d\tau = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \mu(s, s+\epsilon).$$

Since $\mu(s, s + \varepsilon) \in X$ for all ε it follows that h_{μ} is X-valued. The converse assertion is clear.

In the scalar case it is well-known that $C_0(\mathbb{R})^{\odot \odot} = BUC(\mathbb{R})$, the Banach space of bounded, uniformly continuous functions on \mathbb{R} . As might be expected, in the vector-valued case we get $C_0(\mathbb{R}; X)^{\odot \odot} = BUC(\mathbb{R}; X^{**})$. This follows from Theorem 3.11 below.

We will now investigate the special case of Theorem 2.2 where X = C(K) with K compact Hausdorff (or $X = C_0(\Omega)$ with Ω locally compact Hausdorff). We have $C_0(\mathbb{R}; C(K)) \simeq C_0(\mathbb{R} \times K)$. The following lemma is more or less standard. LEMMA 2.4: Suppose $B \subset M(K)$ is separable. Then there is a positive $\mu \in$

Proof: Let (ν_n) be a dense sequence in B and define

M(K) such that $\nu \ll \mu$ for all $\nu \in B$.

$$\mu := \sum_{n=1}^{\infty} \frac{|\nu_n|}{2^n \|\nu_n\|}.$$

Then $\nu_n \ll \mu$ for all n, so by closure also $\nu \ll \mu$ for all $\nu \in B$.

Identifying $C_0(\mathbb{R}; C(K))$ with $C_0(\mathbb{R} \times K)$ the translation group from above is given by

$$T(t)f(x,y) = f(x+t,y).$$

The following result gives an alternative representation of the sun-dual of $C_0(\mathbb{R} \times K)$ with respect to this group. Lebesgue measure on \mathbb{R} will be denoted by m; $\mu_1 \otimes \mu_2$ denotes the product measure of two measures μ_1, μ_2 .

THEOREM 2.5:
$$C_0(\mathbb{R} \times K)^{\odot} = \bigcup_{0 \le \mu \in M(K)} L^1(\mathbb{R} \times K, m \otimes \mu).$$

Proof: By Theorem 2.2 we have $C_0(\mathbb{R} \times K)^{\odot} = L^1(\mathbb{R}; M(K))$. But any $f \in L^1(\mathbb{R}; M(K))$ is essentially separably valued. Therefore without loss of generality we may assume that $\{f(t) : t \in \mathbb{R}\}$ is a separable subset of M(K). By Lemma 2.4 there is a positive $\mu \in M(K)$ such that $f(t) \ll \mu$ for all f. By the Radon-Nikodym theorem we may regard f as an element of $L^1(\mathbb{R}; L^1(K, \mu))$. By the Fubini theorem, the latter is isometric to $L^1(\mathbb{R} \times K, m \otimes \mu)$. This proves the inclusion \subset . For the reverse inclusion, let $\mu \geq 0$ and pick $f \in L^1(\mathbb{R} \times K, m \otimes \mu)$. Approximate f by a compactly supported \tilde{f} in $C(\mathbb{R} \times K)$ and note that translation of \tilde{f} is continuous in the L^1 -norm.

By Theorem 2.5, any $\nu \in C_0(\mathbb{R} \times K)^{\odot}$ belongs to some $L^1(\mathbb{R} \times K, m \otimes \mu)$ with $\mu \geq 0$. We will now give an explicit description of a possible choice for μ . For $\nu \in M(\mathbb{R} \times K)$ positive, define $\pi \nu \in M(K)$ by $\pi \nu(F) := \nu(\mathbb{R} \times F)$. Then for $f \in C(K)$ we have

$$\int_K f(y) \ d\pi\nu(y) = \int_K \int_{\mathbb{R}} f(y) \ d\nu(x,y).$$

We need the following lemma.

LEMMA 2.6: Let λ , μ and ν be positive measures in $M(\mathbb{R})$, M(K) and $M(\mathbb{R} \times K)$ respectively. If $\nu \ll \lambda \otimes \mu$ then $\nu \ll \lambda \otimes \pi \nu$.

Proof: By assumption there is an $h \in L^1(\mathbb{R} \times K, \lambda \otimes \mu), h \ge 0$ a.e., such that $d\nu = h \ d(\lambda \otimes \mu)$. Define

$$K_0 := \{ y \in K : \int_{\mathbb{R}} h(x, y) \ d\lambda(x) = 0 \};$$

$$K_1 := \{ y \in K : \int_{\mathbb{R}} h(x, y) \ d\lambda(x) > 0 \}.$$

By the Fubini theorem,

$$\nu(\mathbb{R}\times K_0)=\int_{K_0}\int_{\mathbb{R}}h(x,y)\ d\lambda d\mu=0.$$

Now suppose $(\lambda \otimes \pi \nu)(A) = 0$. We have to show that $\nu(A) = 0$. But we have

$$\begin{aligned} 0 &= (\lambda \otimes \pi \nu)(A) = \int_{K} \int_{\mathbb{R}} \chi_{A}(x, y) \ d\lambda(x) d(\pi \nu)(y) \\ &= \int_{K} \int_{\mathbb{R}} \int_{\mathbb{R}} \chi_{A}(x, y) h(z, y) \ d\lambda(x) d\lambda(z) d\mu(y) \\ &= \int_{K} \int_{\mathbb{R}} \chi_{A}(x, y) \Big(\int_{\mathbb{R}} h(z, y) \ d\lambda(z) \Big) \ d\lambda(x) d\mu(y) \\ &= \int_{K_{1}} \int_{\mathbb{R}} \chi_{A}(x, y) \Big(\int_{\mathbb{R}} h(z, y) \ d\lambda(z) \Big) \ d\lambda(x) d\mu(y). \end{aligned}$$

Since $\int_{\mathbb{R}} h(z, y) \ d\lambda(z) > 0$ for $y \in K_1$, we see that $A \cap (\mathbb{R} \times K_1)$ is a $\lambda \otimes \mu$ null set, hence also a ν -null set (since by assumption $\nu \ll \lambda \otimes \mu$). Therefore $A \subset (A \cap (\mathbb{R} \times K_1)) \cup (\mathbb{R} \times K_0)$ is a ν -null set.

Combination of Theorem 2.5 and Lemma 2.6 gives the following intrinsic characterization of those ν belonging to $C_0(\mathbb{R} \times K)^{\odot}$.

THEOREM 2.7: $\nu \in C_0(\mathbb{R} \times K)^{\odot}$ if and only if $\nu \ll m \otimes \pi |\nu|$.

One might wonder whether there is a more direct proof of Theorem 2.7. Indeed such a proof can be given. What may be more surprising is that it is possible to re-deduce Theorem 2.2 as a corollary from 2.7. Since we think that this approach is interesting in its own right, we will carry it out.

Direct proof of Theorem 2.7: If $\nu \in L^1(\mathbb{R} \times K, m \otimes \pi |\nu|)$ then as in the proof of Theorem 2.5 we have $\nu \in C_0(\mathbb{R} \times K)^{\odot}$. The proof of the converse proceeds in two steps. For Borel measures μ on \mathbb{R} and ν on $\mathbb{R} \times K$ define the 'convolution' $\mu * \nu$ on $\mathbb{R} \times K$ by

$$\int_{\mathbb{R}\times K} f \ d(\mu * \nu) = \int_{\mathbb{R}\times K} \int_{\mathbb{R}} f(x+t,y) \ d\mu(t) \ d\nu(x,y).$$

Now let $\nu \in C_0(\mathbb{R} \times K)^{\odot}$.

STEP 1: For T > 0 let $m_{[0,T]}$ be the Borel measure on \mathbb{R} defined by $m_{[0,T]}(E) = m(E \cap [0,T])$. For $f \in C_0(\mathbb{R} \times K)$ and T > 0 we have

$$\left\langle \frac{1}{T} \int_0^T T^*(t) \nu \ dt, f \right\rangle = \left\langle \nu, \frac{1}{T} \int_0^T T(t) f \ dt \right\rangle$$
$$= \frac{1}{T} \int_{\mathbb{R} \times K} \int_0^T f(x+t, y) \ dt \ d\nu(x, y)$$
$$= \frac{1}{T} \langle m_{[0,T]} * \nu, f \rangle.$$

This shows that the equality

$$\frac{1}{T} \int_0^T T^*(t) \nu \ dt = \frac{1}{T} m_{[0,T]} * \nu$$

holds. We claim that

$$m_{[0,T]}*\nu\ll m*|\nu|.$$

Indeed, let E be measurable such that $(m * |\nu|)(E) = 0$. This means by definition that

$$\int_{\mathbb{R}\times K}\int_{\mathbb{R}}\chi_E(x+t,y)\ dm(t)\ d|\nu|(x,y)=0.$$

It follows that

$$\int_{\mathbb{R}\times K}\int_0^T\chi_E(x+t,y)\ dt\ d|\nu|(x,y)=0.$$

Hence

$$\chi_E(x+t,y)=0, \qquad m_{[0,T]}\otimes |\nu|-\mathrm{a.e}$$

From this it is clear that also

$$\chi_E(x+t,y)=0, \qquad m_{[0,T]}\otimes\nu-{\rm a.e.}$$

Rewriting this in terms of convolution, this is the same as $(m_{[0,T]} * \nu)(E) = 0$. Our claim is proved. By now we have shown that

$$\frac{1}{T}\int_0^T T^*(t)\nu \ dt \ll m * |\nu|.$$

Since by assumption

$$\lim_{T\downarrow 0}\frac{1}{T}\int_0^T T^*(t)\nu \ dt = \nu$$

strongly and since obviously $\{\mu : \mu \ll m * |\nu|\}$ is closed, it follows that $\nu \ll m * |\nu|$. STEP 2: We claim that $m * |\nu| = m \otimes \pi |\nu|$. Let $\pi : \mathbb{R} \times K \to K$ be projection onto the second coordinate. We claim that the following equality holds:

$$\int_{\mathbb{R}\times K} f \circ \pi \ d|\nu| = \int_K f \ d\pi |\nu|$$

Indeed, by the Riesz Representation Theorem the linear functional on C(K) defined by

$$f\mapsto \int_{\mathbb{R}\times K}f\circ\pi\ d|\nu|$$

is represented by some $\mu \in C(K)^*$ and it is straightforward to check that $\mu = \pi |\nu|$. This proves the claim.

For $A \subset \mathbb{R} \times K$ measurable, put

$$A_{y_1} := A \cap \{(x, y) \in \mathbb{R} \times K : y = y_1\}.$$

Using our claim and the translation invariance of the Lebesgue measure m we see

$$(m * |\nu|)(A) = \int_{\mathbb{R} \times K} \int_{\mathbb{R}} \chi_A(x + t, y) \ dm(t) \ d|\nu|(x, y)$$
$$= \int_{\mathbb{R} \times K} m(A - x)_y \ d|\nu|(x, y)$$
$$= \int_{\mathbb{R} \times K} m(A)_y \ d|\nu|(x, y)$$
$$= \int_K m(A)_y \ d\pi|\nu|(y)$$
$$= \int_K \int_{\mathbb{R}} \chi_A(t, y) \ dm(t) \ d\pi|\nu|(y)$$
$$= \int_{\mathbb{R} \times K} \chi_A(t, y) \ d(m \otimes \pi|\nu|)(t, y)$$
$$= (m \otimes \pi|\nu|)(A).$$

This shows that $m * |\nu| = m \otimes \pi |\nu|$. Combining this with Step 1 we see that $\nu \ll m \otimes \pi |\nu|$ as was to be proved.

Second proof of Theorem 2.2: Let X be an arbitrary Banach space. By the Banach-Alaoglu theorem the dual unit ball $K := B_{X^*}$ is weak*-compact. The map $i : X \to C(K)$ defined by $ix(x^*) = \langle x^*, x \rangle$ is an isometric embedding. Let $\tilde{i} : C_0(\mathbb{R}; X) \to C_0(\mathbb{R}; C(K)) = C_0(\mathbb{R} \times K)$ be the induced embedding. In this way we may regard $C_0(\mathbb{R}; X)$ as a closed, translation invariant subspace of $C_0(\mathbb{R} \times K)$. Let $y^{\odot} \in C_0(\mathbb{R}; X)^{\odot}$. We must show: $y^{\odot} \in L^1(\mathbb{R}; X^*)$. By the extension theorem for adjoint semigroups [Ne], y^{\odot} can be extended to an element ν of $C_0(\mathbb{R} \times K)^{\odot}$. By Theorem 2.7 there is a density function $g \in L^1(\mathbb{R} \times K, m \otimes \pi |\nu|) = L^1(\mathbb{R}; L^1(K, \pi |\nu|))$ representing ν . We claim that $y^{\odot} = (\tilde{i})^* \nu$ can be regarded as an element of $L^1(\mathbb{R}; X^*)$. To see this, let $f \in C_0(\mathbb{R}; X)$ be arbitrary and note that

$$\begin{split} \int_{\mathbb{R}} f(\tau) \ dy^{\odot}(\tau) &= \langle y^{\odot}, f \rangle = \langle \nu, \tilde{i}(f) \rangle \\ &= \int_{\mathbb{R}} (\tilde{i}(f))(\tau) \ d\nu(\tau) = \int_{\mathbb{R}} g(\tau) \ (\tilde{i}(f))(\tau) \ d\tau \\ &= \int_{\mathbb{R}} g(\tau) \ i(f(\tau)) \ d\tau = \int_{\mathbb{R}} i^{*}(g(\tau)) \ f(\tau) \ d\tau. \end{split}$$

Hence y^{\odot} can be represented by \tilde{g} , defined by $\tilde{g}(t) := i^*(g(t))$. Since $i^*(g(t)) \in X^*$ for all $t \in \mathbb{R}$ we see that $y^{\odot} \in L^1(\mathbb{R}; X^*)$ and the claim is proved.

3. The Injective and Projective Tensor Product

Throughout this section X and Z will denote non-zero Banach spaces. We assume either both to be real or complex. $Z \otimes X$ denotes the algebraic tensor product (cf. [S1]).

The π -norm on $Z \otimes X$, often called the **projective** norm, is described most conveniently by its unit ball, which by definition is the convex closure of the set $B_Z \otimes B_X$, where B_Z and B_X are the unit balls of Z and X respectively. An analytic expression for the π -norm is given as follows:

$$||u||_{\pi} = \inf\{\sum_{i=1}^{n} ||z_i||, ||x_i|| : u = \sum_{i=1}^{n} z_i \otimes x_i\}, \quad u \in Z \otimes X.$$

The π -tensor product $Z \otimes_{\pi} X$ is the completion of $Z \otimes X$ with respect to this norm. Sometimes it is denoted by $Z \otimes X$. The standard example for the π -tensor product is the following. Let Z be a space $L^1(\mu)$, where μ is some positive measure and X an arbitrary Banach space. Then $L^1(\mu) \otimes_{\pi} X$ can be identified in a canonical way with the space $L^1(\mu, X)$ of all X-valued Bochner integrable functions.

An element $u = \sum_{i=1}^{n} z_i \otimes x_i \in Z \otimes X$ can (algebraically) be identified with an operator $T_u \in \mathcal{L}(Z^*, X)$ by the formula

$$T_u z^* = \sum_{i=1}^n \langle z^*, z_i \rangle x_i.$$

The ε - or injective norm on $Z \otimes X$ is the norm induced by the operator norm

on $\mathcal{L}(Z^*, X)$. Thus for $u = \sum_{i=1}^n z_i \otimes x_i$ the ε -norm is given by

$$\begin{aligned} \|u\|_{\varepsilon} &= \sup\left\{ \left\| \sum_{i=1}^{n} \langle z^{*}, z_{i} \rangle x_{i} \right\| : \|z^{*}\| \leq 1 \right\} \\ &= \sup\left\{ \left| \sum_{i=1}^{n} \langle z^{*}, z_{i} \rangle \langle x^{*}, x_{i} \rangle \right| : \|z^{*}\| \leq 1 , \|x^{*}\| \leq 1 \right\}. \end{aligned}$$

The completion of $Z \otimes X$ with respect to this norm is denoted by $Z \otimes_{\varepsilon} X$. It is called the ε - or injective tensor product of Z and Y. Some authors denote it by $Z \otimes X$. The standard example is as follows: let $Z := C_0(\Omega)$, Ω locally compact and X be an arbitrary Banach space. Then $C_0(\Omega) \otimes_{\varepsilon} X$ can be identified with $C_0(\Omega; X)$.

It is well-known that dual spaces of tensor products can be identified with certain operator ideals. For $u^* \in (Z \tilde{\otimes}_{\mathfrak{e}} X)^*$ or $u^* \in (Z \tilde{\otimes}_{\pi} X)^*$, define $T_{u^*} \in \mathcal{L}(Z, X^*)$ by

$$\langle u^*, u \rangle = \sum_{i=1}^n \langle T_{u^*} z_i, x_i \rangle,$$

where $u = \sum_{i=1}^{n} z_i \otimes x_i \in Z \otimes X$. In particular, the dual of $Z \otimes_{\pi} X$ can be identified with the space $\mathcal{L}(Z, X^*)$. On the other hand, the dual of $Z \otimes_{\epsilon} X$ can be identified with the set of all **integral** operators $Z \to X^*$ [DU], which we denote by $\mathcal{L}^i(Z, X^*)$.

A bounded linear operator $T \in \mathcal{L}(Z)$ induces a linear operator $T \otimes id : Z \otimes X \rightarrow Z \otimes X$ by the formula

$$(T \otimes \mathrm{id})(z \otimes x) := Tz \otimes x.$$

The operator $T \otimes \operatorname{id}$ is bounded for both the ε - and the π -norm. In fact, in both cases one has $||T \otimes \operatorname{id}|| = ||T||$. The unique continuous extensions to $Z \otimes_{\varepsilon} X$ and $Z \otimes_{\pi} X$ will be denoted by $T \otimes_{\varepsilon} \operatorname{id}$ and $T \otimes_{\pi} \operatorname{id}$ respectively.

LEMMA 3.1:
$$\sigma(T \tilde{\otimes}_{\varepsilon} id) = \sigma(T \tilde{\otimes}_{\pi} id) = \sigma(T)$$

Proof: We prove a slightly more general result: Suppose $\|\cdot\|$ is a reasonable crossnorm (in the sense of [DU; Def. VIII.1.1]) on $Z \otimes X$ with the additional property that every bounded linear operator $T: Z \to Z$ extends to a bounded linear operator $T \otimes \tilde{Z} \otimes X$ with respect to $\|\cdot\|$. Then $\sigma(T \otimes id) = \sigma(T)$.

 $\sigma(T \otimes id) \subset \sigma(T)$: Suppose $\lambda - T$ is invertible. Then $(\lambda - T)^{-1} \otimes id$ is a bounded operator on $Z \otimes X$ and it is obvious that on the dense subspace $Z \otimes X$,

 $(\lambda - T)^{-1} \otimes \operatorname{id}$ is a two-sided inverse for $\lambda - (T \otimes \operatorname{id})$. By density it follows that $(\lambda - T)^{-1} \widetilde{\otimes} \operatorname{id} = (\lambda - (T \widetilde{\otimes} \operatorname{id}))^{-1}$, so $\lambda \in \rho(T \widetilde{\otimes} \operatorname{id})$.

 $\sigma(T) \subset \sigma(T \otimes id)$: Suppose $\lambda \in \sigma(T)$. If $\lambda \in \sigma_{ap}(T)$, the approximate point spectrum of T (cf. [Na]), then by definition we can choose an approximate eigenvector $(z_n)_{n=1}^{\infty}$, i.e., $||z_n|| = 1$ for all n and

$$\lim_{n \to \infty} \|Tz_n - \lambda z_n\| = 0.$$

We claim that $(z_n \otimes x)_{n=1}^{\infty}$ is an approximate eigenvector of $T \otimes id$ for every norm-1 vector $x \in X$. Indeed, we have $||z_n \otimes x|| = ||z_n|| ||x|| = 1$ and moreover

$$\|(T\tilde{\otimes}id)(z_n \otimes x) - \lambda(z_n \otimes x)\| = \|(Tz_n - \lambda z_n) \otimes x\|$$
$$= \|Tz_n - \lambda z_n\| \|x\| \to 0, \qquad n \to \infty.$$

Thus $\lambda \in \sigma(T \otimes id)$. If $\lambda \in \sigma(T) \setminus \sigma_{ap}(T)$ then the range of $\lambda - T$ cannot be dense. According to the Hahn-Banach theorem, $\lambda \in \sigma_p(T^*)$. Choose a norm-1 vector z^* such that $T^*z^* = \lambda z^*$. We claim that $\lambda \in \sigma_p((T \otimes id)^*)$ with eigenvector $z^* \otimes x^*$, where $x^* \neq 0$ is arbitrary in X^* . Indeed, for any $z \otimes x$ we have

$$\langle (T\tilde{\otimes}id)^*(z^* \otimes x^*), z \otimes x \rangle = \langle z^* \otimes x^*, Tz \otimes x \rangle$$

$$= \langle z^*, Tz \rangle \langle x^*, x \rangle$$

$$= \langle T^*z^*, z \rangle \langle x^*, x \rangle$$

$$= \lambda \langle z^*, z \rangle \langle x^*, x \rangle$$

$$= \lambda \langle z^* \otimes x^*, z \otimes x \rangle.$$

The claim now follows from a density argument. Hence $\lambda \in \sigma((T \otimes id)^*) = \sigma(T \otimes id)$. The second inclusion is proved and the lemma follows.

Given a strongly continuous semigroup $T_0(t)$ on Z with generator A_0 then $T(t) := T_0(t) \otimes id$ extends to a one-parameter semigroup of bounded linear operators on $Z \tilde{\otimes}_{\varepsilon} X$ and $Z \tilde{\otimes}_{\pi} X$ respectively. In fact it is easy to see that it is strongly continuous as well. Moreover, spectrum and resolvent can be described. We state these facts in the following proposition, in which $\tilde{\otimes}$ denotes either the ε - or the π -tensor product.

PROPOSITION 3.2: T(t) is a strongly continuous semigroup. If we denote its generator by A then $\sigma(A) = \sigma(A_0)$. For λ in the resolvent set we have $R(\lambda, A) = R(\lambda, A_0) \tilde{\otimes} id$.

Proof: By the spectral mapping formula (cf. [Na]) we have

$$\sigma(R(\lambda, A_0)) \setminus \{0\} = (\lambda - \sigma(A_0))^{-1}$$

and similarly for A. Hence, to prove the first assertion, we see that it suffices to show that $\sigma(R(\lambda, A)) = \sigma(R(\lambda, A_0) \otimes id)$, but this follows from the previous lemma. The second assertion is obvious (e.g. apply a density argument).

Our next aim is to give a description of the adjoints of T(t) and $R(\lambda, A)$. In order to do this, we identify the dual spaces of $Z \otimes_{\pi} X$ and $Z \otimes_{\epsilon} X$ with $\mathcal{L}(Z, X^*)$ and $\mathcal{L}^i(Z, X^*)$ respectively. Given a bounded operator on Z, we want to determine the adjoint of $S \otimes_{id}$, where \otimes_{i} is either \otimes_{ϵ} or \otimes_{π} . Given $z \otimes x \in Z \otimes X$ and $R \in \mathcal{L}(Z, X^*)$ or $R \in \mathcal{L}^i(Z, X^*)$, then

$$\langle R, (S \tilde{\otimes} \mathrm{id})(z \otimes x) \rangle = \langle R, (Sz) \otimes x \rangle = \langle RSz, x \rangle = \langle RS, z \otimes x \rangle.$$

This shows that we have $(S \otimes id)^*(R) = RS$. We summarize this observation in the following proposition.

PROPOSITION 3.3: The adjoint operators $T^*(t)$ and $R(\lambda, A)^* : \mathcal{L}(Z, X^*) \to \mathcal{L}(Z, X^*)$ are given as follows:

$$egin{aligned} T^*(t)(S) &= ST_0(t), \qquad S \in \mathcal{L}(Z,X^*); \ R(\lambda,A)^*(S) &= SR(\lambda,A_0), \qquad S \in \mathcal{L}(Z,X^*). \end{aligned}$$

The same assertions are valid for the $\tilde{\otimes}_{\varepsilon}$ tensor product, with $\mathcal{L}(Z, X^*)$ replaced by $\mathcal{L}^i(Z, X^*)$.

Let us recall that the integral operators form a two-sided operator ideal, i.e. given $R \in \mathcal{L}^i(Z, X^*)$ and bounded linear operators $S_1 \in \mathcal{L}(Z)$ and $S_2 \in \mathcal{L}(X^*)$ then $S_2 \circ R \circ S_1$ is integral as well and $||S_2 \circ R \circ S_1||_i \leq ||S_2|| \cdot ||R||_i \cdot ||S_1||$. Here $||\cdot||_i$ is the norm induced by $(Z \otimes_{\varepsilon} X)^*$.

Both dual spaces $\mathcal{L}(Z, X^*)$ and $\mathcal{L}^i(Z, X^*)$ contain $Z^* \otimes X^*$ as a subspace. In order to identify the closure of $Z^* \otimes X^*$ with appropriate subspaces of $\mathcal{L}(Z, X^*)$ and $\mathcal{L}^i(Z, X^*)$ respectively we make for the rest of Section 3 the following assumption:

ASSUMPTION 3.4: Z^* has the approximation property (a.p.).

The classical Banach spaces ℓ^p , $C_0(\Omega)$, $L^p(\mu)$ satisfy Assumption 3.4. Z^* having the a.p. implies that the closure of $Z^* \otimes X^*$ in $\mathcal{L}^i(Z, X^*)$ can be identified with $Z^* \tilde{\otimes}_{\pi} X^*$. Operators belonging to this closure are called **nuclear operators**. Moreover, since Z^* has the a.p., so does Z [DU]. The latter implies that the closure of $Z^* \otimes X^*$ in $\mathcal{L}(Z, X^*)$, which is $Z^* \tilde{\otimes}_{\varepsilon} X^*$, is precisely the set of all compact operators from Z into X^* .

Now we are going to show that in case of sun-reflexivity the sun-dual of the ε -tensor product can be described easily. We already noted in section 1 that a semigroup is sun-reflexive if and only if the resolvent of the generator is weakly compact.

THEOREM 3.5: Let Z be sun-reflexive with respect to $T_0(t)$. Then the sun-dual of the semigroup T(t) induced on $Z \otimes_{\varepsilon} X$ is the closure in $Z^* \otimes_{\pi} X^*$ of $Z^{\odot} \otimes X^*$. Proof: Given $z^* \in Z^*$ and $x^* \in X^*$ then $T^*(t)(z^* \otimes x^*) = (T_0^*(t)z^*) \otimes x^*$. It follows that

 $||T^*(t)(z^* \otimes x^*) - z^* \otimes x^*|| = ||(T^*_0(t)z^* - z^*)|| \cdot ||x^*||.$

This shows that if $z^* \in Z^{\odot}$ then $z^* \otimes x^* \in (Z \otimes_{\epsilon} X)^{\odot}$. Hence also the closed linear subspace of $Z^* \otimes_{\pi} X^*$ generated by $\{z^* \otimes x^* : z^* \in Z^{\odot}, x^* \in X^*\}$ is contained in $(X \otimes_{\epsilon} Z)^{\odot}$.

To prove the reverse inclusion, we first claim that $(Z \otimes_{\varepsilon} X)^{\odot} \subset Z^* \otimes_{\pi} X^*$. For the rest of the proof we fix one $\lambda \in \varrho(A_0)$. For $S \in (Z \otimes_{\varepsilon} X)^* = \mathcal{L}^i(Z, X^*)$ we have by Proposition 3.3 $R(\lambda, A)^*(S) = S \circ R(\lambda, A_0)$. Since Z is sun-reflexive with respect to $T_0(t)$, it follows that $R(\lambda, A_0)$ is weakly compact. From a theorem of Grothendieck (see [DU, Thm VIII.4.12]) it follows that $S \circ R(\lambda, A_0)$ is nuclear. Thus $R(\lambda, A)^*(S) \in Z^* \otimes_{\pi} X^*$ and by Proposition 1.1 the claim is proved.

Thus if we fix $S \in \mathcal{L}^i(Z, X^*)$, then for arbitrary $\varepsilon > 0$ there exist $z_i \in Z^*$, $x_i \in X^*$ such that

$$||S \circ R(\lambda, A_0) - \sum_{i=1}^n z_i^* \otimes x_i^*||_i < \varepsilon.$$

It follows that

$$\left\| S \circ R(\lambda, A_0)^2 - \sum_{i=1}^n R(\lambda, A_0)^* z_i^* \otimes x_i^* \right\|_i$$
$$= \left\| \left(S \circ R(\lambda, A_0) - \sum_{i=1}^n z_i^* \otimes x_i^* \right) \circ R(\lambda, A_0) \right\|_i < \varepsilon \cdot \|R(\lambda, A_0)\|$$

Since $R(\lambda, A_0)^* z_i^* \in Z^{\odot}$ it follows that $R(\lambda, A)^{*2}(S) = S \circ R(\lambda, A_0)^2$ is in the closed linear subspace of $Z^* \tilde{\otimes}_{\pi} X^*$ generated by $\{z^* \otimes x^* : z^* \in Z^{\odot}, x^* \in X^*\}$. The conclusion now follows from Proposition 1.1.

We point out that the π -tensor product is not injective, i.e. given a subspace Y of Z^* , then in general $Y \otimes_{\pi} X^*$ cannot be identified with the closed linear subspace of $Z^* \otimes_{\pi} X^*$ generated by $\{y \otimes x^* : y \in Y, x^* \in X^*\}$. There are special cases where this is true, e.g. if Y is complemented in Z^* or if X is a $C_0(\Omega)$ -space respectively. Thus we have the following corollary.

COROLLARY 3.6: If in addition Z^{\odot} is complemented in Z^* or $X = C_0(\Omega)$, Ω locally compact, then $(Z \tilde{\otimes}_{\varepsilon} X)^{\odot} = Z^{\odot} \tilde{\otimes}_{\pi} X^*$.

If $T_0(t)$ is a positive semigroup on a Banach lattice Z whose dual has order continuous norm, then by a result of de Pagter (to be published), Z^{\odot} is a projection band in Z^* . This applies in particular to the case $Z = C_0(\Omega)$ and we obtain:

COROLLARY 3.7: Suppose $T_0(t)$ is a positive semigroup on $C_0(\Omega)$. Then there exists a measure space $(\tilde{\Omega}, \tilde{\Sigma}, \tilde{\mu})$ such that $C_0(\Omega; X)^{\odot} = L^1(\tilde{\mu}; X^*)$.

Now we consider the case of the π -tensor product. We are looking for conditions, ensuring that the sun-dual of $X \tilde{\otimes}_{\pi} Z$ can be identified with $Z^{\odot} \tilde{\otimes}_{\epsilon} X^*$. In contrast to Theorem 3.5 now sun-reflexivity (weak compactness of the resolvent) is not sufficient as Example 3.10 below shows. If we require compactness of the resolvent however, then the sun-dual can be described in a nice way.

THEOREM 3.8: Assume that the generator of the semigroup $T_0(t)$ on Z has compact resolvent, then for the semigroup induced on $Z \tilde{\otimes}_{\pi} X$ we have $(Z \tilde{\otimes}_{\pi} X)^{\odot} = Z^{\odot} \tilde{\otimes}_{\epsilon} X^*$.

Proof: As in the proof of Theorem 3.5 it can be shown that $Z^{\odot} \otimes_{\varepsilon} X^*$ is contained in the sun-dual of $Z \otimes_{\pi} X$. To prove the converse inclusion we observe that $R(\lambda, A_0)$ being compact implies that for $\varepsilon > 0$ there exist $z_i \in Z$ and $z_i^* \in Z^*$ such that

$$||R(\lambda, A_0) - \sum_{i=1}^m z_i^* \otimes z_i|| < \varepsilon.$$

Thus given $S \in \mathcal{L}(Z, X^*)$ then

$$\begin{split} \left\| S \circ R(\lambda, A_0)^2 - \sum_{i=1}^m R(\lambda, A_0)^* z_i^* \otimes S z_i \right\| \\ &= \left\| S \circ \left(R(\lambda, A_0) - \sum_{i=1}^m z_i^* \otimes z_i \right) \circ R(\lambda, A_0) \right\| \\ &\leq \varepsilon \|S\| \|R(\lambda, A_0)\|. \end{split}$$

It follows that $R(\lambda, A)^{*2}(S)$ can be approximated with respect to the operator norm by elements of $Z^{\odot} \otimes X^*$. Since the operator norm induces the ε -norm it follows that $R(\lambda, A)^{*2}(S) \in Z^{\odot} \tilde{\otimes}_{\varepsilon} X^*$ for every $S \in \mathcal{L}(Z, X^*)$. Then from Proposition 1.1 we can conclude that $(Z \tilde{\otimes}_{\pi} X)^{\odot} \subset Z^{\odot} \tilde{\otimes}_{\varepsilon} X^*$.

The case $Z = L^1(\mu)$ was already proved in [Pa1]. On spaces $C_0(\Omega)$, Ω locally compact, or spaces $L^1(\mu)$, a resolvent is weakly compact if and only it is compact (see [Pa2]). Therefore the following corollary is an immediate consequence of Theorem 3.8.

COROLLARY 3.9: Assume that Z is either a space $L^1(\mu)$ or a space $C_0(\Omega), \Omega$ locally compact. If the semigroup $T_0(t)$ is sun-reflexive then

$$(Z\tilde{\otimes}_{\pi}X)^{\odot}=Z^{\odot}\tilde{\otimes}_{\epsilon}X^{*}.$$

In general weak compactness of the resolvent is not enough in Theorem 3.8, as the following example shows.

Example 3.10: Consider the semigroup of translations on $Z = L^{p}(\mathbb{R})$. For $1 we have <math>L^{p}(\mathbb{R})^{\odot} = L^{p}(\mathbb{R})^{*} = L^{q}(\mathbb{R})$ with 1/p + 1/q = 1 and the resolvent is weakly compact, Z being reflexive. Assuming that

$$(L^{p}(\mathbb{R})\tilde{\otimes}_{\pi}X)^{\odot} = L^{q}(\mathbb{R})\tilde{\otimes}_{e}X^{*} = \{T \in \mathcal{L}(L^{p}(\mathbb{R}), X^{*}) : T \text{ is compact } \}$$

then from Proposition 3.3 and Proposition 1.1 we conclude that $S \circ R(\lambda, A_0)$ is compact for every $S \in \mathcal{L}(L^p(\mathbb{R}), X^*)$. Choosing $X = L^q(\mathbb{R})$ and S the identity on $L^p(\mathbb{R})$ shows that $R(\lambda, A_0)$ has to be compact, which is not the case (for then A_0 must have countable spectrum, but it is well-known that $\sigma(A_0) = i\mathbb{R}$).

In case p = 1 the resolvent of the translation group even fails to be weakly compact and the conclusion of Theorem 3.8 again does not hold, as we will now show.

THEOREM 3.11: If $T_0(t)$ is the translation group on $L^1(\mathbb{R})$ then $L^1(\mathbb{R}; X)^{\odot} = BUC(\mathbb{R}; X^*)$.

Proof: First we claim that $R(\lambda, A_0)$ is representable [Pa1]. For almost all s we have

$$(R(\lambda, A_0)f)(s) = \int_0^\infty e^{-\lambda t} f(s+t) dt$$
$$= \int_{-\infty}^\infty e^{-\lambda(t-s)} \chi_{[s,\infty)}(t) f(t) dt$$

Define $g: \mathbb{R} \to L^1(\mathbb{R})$ by $(g(t))(s) = e^{-\lambda(t-s)}\chi_{[s,\infty)}(t)$. We have

$$\|g(t)\|_{L^1(\mathbb{R})} = \int_{-\infty}^{\infty} e^{-\lambda(t-s)} \chi_{[s,\infty)}(t) \ ds = \int_{-\infty}^{t} e^{-\lambda(t-s)} \ ds = \frac{1}{\lambda}.$$

Since also g is continuous as a map $\mathbb{R} \to L^1(\mathbb{R})$, hence in particular strongly measurable, this shows that $g \in L^{\infty}(\mathbb{R}; L^1(\mathbb{R}))$ and our claim is proved. From Proposition 2.2 in [Pa1] we deduce that $L^1(\mathbb{R}; X)^{\odot} \subset L^{\infty}(\mathbb{R}; X^*)$. Let $h \in L^1(\mathbb{R}; X)^{\odot}$. We claim that h is continuous. Let ϕ_n be any continuous function with compact support such that $\phi_n(t) = 1$ for all $t \in [-n, n]$. Clearly it suffices to prove that $h\phi_n$ is continuous for all n. Since each $h\phi_n$ is compactly supported and since obviously $h \in L^1(\mathbb{R}; X)^{\odot}$ implies $h\phi_n \in L^1(\mathbb{R}; X)^{\odot}$, we may consider $h\phi_n$ as an element of $L^1([-N_n, N_n]; X)^{\odot}$ for some N_n large enough. Since $L^1([-N_n, N_n])$ is \odot -reflexive with respect to translation (see e.g. [HPh]) we have by Theorem 3.9 that

$$L^{1}([-N_{n}, N_{n}]; X)^{\odot} = L^{1}([-N_{n}, N_{n}])^{\odot} \tilde{\otimes}_{\epsilon} X^{*} \subset C([-N_{n}, N_{n}]) \tilde{\otimes}_{\epsilon} X^{*}$$
$$= C([-N_{n}, N_{n}]; X^{*}).$$

Hence $h\phi_n \in C([-N_n, N_n]; X^*)$. This proves that $L^1(\mathbb{R}; X)^{\odot} \subset C(\mathbb{R}; X^*)$. But then we must have that actually $h \in BUC(\mathbb{R}; X^*)$: h is bounded as an element of $L^{\infty}(\mathbb{R}; X^*)$, and uniformly continuous since otherwise the map $t \mapsto T^*(t)h$ is easily seen not to be norm-continuous. This shows $L^1(\mathbb{R}; X)^{\odot} \subset BUC(\mathbb{R}; X^*)$. The reverse inclusion holds trivially.

This theorem is the L^1 -analogue of Theorem 2.2. Now in general it is not true that

$$BUC(\mathbb{R};X) = BUC(\mathbb{R})\tilde{\otimes}_{\epsilon}X$$

holds. In fact, any function in $BUC(\mathbb{R}) \otimes_{\epsilon} X$ must have relatively compact range whereas it is easy to construct functions in $BUC(\mathbb{R}; C_0(\mathbb{R}))$ not having relatively compact range. Just let $f \in C_0(\mathbb{R})$ be any non-zero function. Then the set of translates $\{T(t)f : t \in \mathbb{R}\}$ is not relatively compact, so by defining F(t) = T(t)fwe obtain an $F \in BUC(\mathbb{R}; C_0(\mathbb{R}))$ which does not have relatively compact range.

Remark 3.12: (a) The above examples show that for translation on $Z = L^{p}(\mathbb{R})$, $1 \leq p < \infty$ the conclusion of Theorem 3.8 does not hold for every X.

In fact, let Z be any fixed Banach space and let $T_0(t)$ be a C_0 -semigroup on Z with generator A_0 . We claim that if for every X the formula $(Z \tilde{\otimes}_{\pi} X)^{\odot} =$ $Z^{\odot} \tilde{\otimes}_{\varepsilon} X^*$ holds, then $R(\lambda, A_0)$ must be compact. Take $X = Z^*$. Let $X = Z^*$ and assume $(Z \tilde{\otimes}_{\pi} X)^{\odot} = Z^{\odot} \tilde{\otimes}_{\varepsilon} X^*$. Then $R(\lambda, A)^*(T) = T \circ R(\lambda, A_0)$ is a compact operator for every $T \in (Z \tilde{\otimes}_{\pi} X)^* = \mathcal{L}(Z, X^*) = \mathcal{L}(Z, Z^{**})$. In particular, letting $T : Z \to Z^{**}$ be the canonical embedding, it follows that $R(\lambda, A_0)$ itself is compact. See also [Pa1], where $X = l^{\infty}$ is taken.

(b) Concerning 3.5 the situation is different and weak compactness of $R(\lambda, A_0)$ is not necessary in order that $(Z \otimes_{\varepsilon} X)^{\odot} = \overline{Z^{\odot} \otimes X^*}^{Z^* \otimes_{\pi} X^*}$ holds for every Banach space X. In fact, an inspection of the proof of Theorem 3.5 shows that a necessary and sufficient condition for this is that $T \circ R(\lambda, A_0)$ is nuclear for every operator $T \in \mathcal{L}^i(Z, X^*)$. An example of a semigroup without weakly compact resolvent but satisfying this condition (by Theorem 2.2 !) is translation in $C_0(\mathbb{R})$.

By combining 3.5 and 3.8 one can under suitable assumptions describe the bi-sun-dual of the ε - and the π -tensor product. In order to apply 3.5 and 3.8 we formally need the assumption that $Z^{\odot*}$ has the a.p. The proof below however shows that it suffices to have that Z^* has the a.p.

For $L^1(\mu) \tilde{\otimes}_{\pi} X$ the following result was first proved by de Pagter (unpublished).

PROPOSITION 3.13: Suppose $R(\lambda, A_0)$ is compact. Then:

- (i) $(Z \tilde{\otimes}_{\pi} X)^{\odot \odot}$ is the closure in $Z^{\odot *} \tilde{\otimes}_{\pi} X^{**}$ of $Z \otimes X^{**}$. If either Z is complemented in $Z^{\odot *}$ or X is an $L^{1}(\mu)$ -space then $(Z \tilde{\otimes}_{\pi} X)^{\odot \odot} = Z \tilde{\otimes}_{\pi} X^{**}$.
- (ii) If either Z[⊙] is complemented in Z* or X = C₀(Ω), Ω locally compact Hausdorff, then (Z ⊗_εX)^{⊙⊙} = Z ⊗_εX**.

Proof: First we prove (ii). By Corollary 3.6 we have $(Z \tilde{\otimes}_{\varepsilon} X)^{\odot} = Z^{\odot} \tilde{\otimes}_{\pi} X^*$. The conclusion now follows from Theorem 3.8 in case $Z^{\odot*}$ has the a.p. However, inspection of the proof of Theorem 3.8 shows that the a.p. was needed for showing that $R(\lambda, A_0)$ could be approximated by finite rank operators in the uniform operator topology. Hence what we must show in the present case is that $R(\lambda, A_0^{\odot})$ can be approximated by finite rank operators. That this is true when Z^* has the a.p., i.e. under Assumption 3.4 (regardless whether $Z^{\odot*}$ has the a.p.), is shown by the following argument. Fix $\lambda \in \varrho(A_0)$. Since Z^* has the a.p., $R(\lambda, A_0)$ is the uniform limit of finite rank operators $\Phi_n \in Z^* \otimes Z$. Then for $\mu \in \varrho(A_0)$, $R(\lambda, A_0)R(\mu, A_0)$ is the uniform limit of $\Phi_n R(\mu, A_0)$. Since $R(\mu, A_0)^*Z^* \subset Z^{\odot}$ it follows that $\Phi_n R(\mu, A_0) \in Z^{\odot} \otimes Z$. Moreover,

$$||R(\lambda, A_0)^* R(\mu, A_0)^* - (\Phi_n R(\mu, A_0))^*|| = ||R(\mu, A_0) R(\lambda, A_0) - \Phi_n R(\mu, A_0)||,$$

hence $\mu R(\lambda, A_0^{\odot}) R(\mu, A_0^{\odot}) = \mu R(\lambda, A_0)^* R(\mu, A_0)^*|_{Z^{\odot}}$ is the uniform limit of $\mu \Phi_n R(\mu, A_0)^*|_{Z^{\odot}} \in Z \otimes Z^{\odot} \subset Z^{\odot *} \otimes Z^{\odot}$. Since

$$R(\lambda, A_0^{\odot}) = \lim_{\mu \to \infty} \mu R(\lambda, A_0^{\odot}) R(\mu, A_0^{\odot})$$

in the uniform operator topology (this follows from the resolvent equation for A_0^{\odot}), we can conclude that $R(\lambda, A_0^{\odot})$ can be approximated by finite rank operators. As we noted above, from these considerations we can conclude that

$$(Z^{\odot} \tilde{\otimes}_{\pi} X^*)^{\odot} = Z^{\odot \odot} \tilde{\otimes}_{\epsilon} X^{**}$$

and since $R(\lambda, A_0)$ is compact we have $Z^{\odot \odot} = Z$, and (ii) is proved.

The first assertion of (i) is proved by a similar argument. Now suppose that Z is complemented in $Z^{\odot*}$. Then trivially every $T \in \mathcal{L}(Z, X^*)$ admits an extension to an operator in $\mathcal{L}(Z^{\odot*}, X^*)$. Also, if X is an $L^1(\mu)$ -space, then X^* is injective [LT] and this again implies that every $T \in \mathcal{L}(Z, X^*)$ admits an extension to an operator in $\mathcal{L}(Z^{\odot*}, X^*)$. In other words, in either case the natural map (induced by restriction $\pi: Z^{\odot*} \to Z$)

$$\pi: \mathcal{L}(Z^{\odot*}, X^*) \to \mathcal{L}(Z, X^*)$$

is surjective. But since $\mathcal{L}(Y, X^*) = (Y \tilde{\otimes}_{\pi} X)^*$ this shows that the canonical inclusion map

$$j: Z \tilde{\otimes}_{\pi} X \to Z^{\odot *} \tilde{\otimes}_{\pi} X$$

is an embedding. Applying this to X^{**} instead of X (and noting that X^{***} is an $L^1(\mu)$ -space if X^* is) we obtain that $Z \tilde{\otimes}_{\pi} X^{**}$ can be regarded as a closed subspace of $Z^{\odot*} \tilde{\otimes}_{\pi} X^{**}$ and this proves the second assertion.

4. The *l*-Tensor Product

It is not possible to identify the space $L^{p}(\mu; X)$, $1 , with either a <math>\varepsilon$ - or a π -tensor product. In this case the so-called *l*-tensor product solves the problem. It was introduced about 1970 by Chaney, Fremlin, Levin and Schaefer [Ch, Fr1, S3]. In order to define it, first of all one has to introduce the class of cone absolutely summing operators. The following result is taken from [S2, IV.3].

PROPOSITION 4.1: Let Z be a Banach lattice, X a Banach space. For a bounded linear map $T: Z \to X$ the following are equivalent:

- (i) $\exists C > 0$ such that for every $0 \le f_1, ..., f_n \in \mathbb{Z}$, $\sum_{i=1}^n ||Tf_i|| \le C ||\sum_{i=1}^n f_i||$;
- (ii) For every positive sequence (f_i) in Z such that $\sum_{i=1}^{\infty} f_i$ converges, the sum $\sum_{i=1}^{\infty} ||Tf_i||$ converges;
- (iii) There is an $L^1(\mu)$ -space such that T admits a factorization $Z \xrightarrow{T_1} L^1(\mu) \xrightarrow{T_2} X$ with $T_1 \ge 0$;
- (iv) $\exists 0 \leq \phi \in Z^*$ such that for all $f \in Z$, $||Tf|| \leq \langle \phi, |f| \rangle$;
- (v) The set $\{T^*x^*: ||x^*|| \leq 1\}$ is order bounded in Z^* .

Definition 4.2: $T: Z \to X$ is called **cone absolutely summing** (c.a.s.) if one of the equivalent assertions of Proposition 4.1 is satisfied. The set of all c.a.s operators is denoted by $\mathcal{L}^{l}(Z, X)$. For $T \in \mathcal{L}^{l}(Z, X)$ define

 $||T||_{l} := \inf\{C : (i) \text{ in Proposition 4.1 holds with constant } C\}.$

 $\mathcal{L}^{l}(Z, X)$ is a Banach space and contains the finite-rank operators. If X is a Banach lattice then $\mathcal{L}^{l}(Z, X)$ is a Banach lattice as well.

The *l*-nuclear operators $\mathcal{N}^{l}(Z, X)$ are defined as the closure of the finite rank operators in $\mathcal{L}^{l}(Z, X)$.

As a subspace of $\mathcal{L}(Z,X)$, $\mathcal{L}^{l}(Z,X)$ has the following ideal property: given $T \in \mathcal{L}^{l}(Z,X)$, $R \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Z)$ such that its modulus |S| exists, then $R \circ T \circ S \in \mathcal{L}^{l}(Z,X)$ and

$$||R \circ T \circ S||_{l} \le ||R|| ||T||_{l} || |S|||.$$

Let $u = \sum_{i=1}^{n} z_i \otimes x_i$. By the formula $T_u z^* := \sum_{i=1}^{n} (z^*, z_i) x_i$ we regard $Z \otimes X$ as a linear subspace of $\mathcal{L}^l(Z^*, X)$. On $Z \otimes X$ we define the *l*-norm $\|\cdot\|_l$ to be the norm induced by $\mathcal{L}^l(Z^*, X)$. The Banach space $Z \tilde{\otimes}_l X$ is defined to be the completion of $Z \otimes X$ with respect to the *l*-norm. In this way $Z \tilde{\otimes}_l X$ can be identified with the closure of $Z \otimes X$ in the space $\mathcal{L}^l(Z^*, X)$. In this way $Z^* \tilde{\otimes}_l X$ can be identified with the closure of $Z^* \otimes X$ in $\mathcal{L}^l(Z^{**}, X)$. Now elements $u = \sum_{i=1}^n z_i^* \otimes x_i \in Z^* \otimes X$ can also be identified with an operator $\tilde{T}_u: Z \to X$ (rather than $Z^{**} \to X$), by

$$\tilde{T}_u(z) = \sum_{i=1}^n \langle z_i^*, z \rangle x_i.$$

The following proposition states that indeed $Z^* \tilde{\otimes}_l X$ becomes in this way the closure of $Z^* \otimes X$ in $\mathcal{L}^l(Z, X)$. In fact, the $\mathcal{L}^l(Z, X)$ -closure of $Z^* \otimes X$ is precisely $\mathcal{N}^l(Z, X)$.

PROPOSITION 4.3: $Z^* \tilde{\otimes}_l X$ can be identified isometrically with $\mathcal{N}^l(Z, X)$.

Proof: By definition, $\mathcal{N}^{l}(Z, X)$ is the closure of the finite rank operators in $\mathcal{L}^{l}(Z, X)$. Regarding a finite rank operator $Z \to X$ as an element of $Z^* \otimes X$ as above, we see that $\mathcal{N}^{l}(Z, X)$ is the closure of $Z^* \otimes X$ in $\mathcal{L}^{l}(Z, X)$. On the other hand, by definition $Z^* \otimes_{l} X$ is the $\mathcal{L}^{l}(Z^{**}, X)$ -closure of $Z^* \otimes X$. Therefore it suffices to show that the $\mathcal{L}^{l}(Z, X)$ -norm and the $\mathcal{L}^{l}(Z^{**}, X)$ -norm agree on $Z^* \otimes X$. To this end, let $u \in Z^* \otimes X$ be given. On the one hand, we can consider u as a c.a.s. map $T_u: Z^{**} \to X$. This map is also c.a.s. as a map $Z^{**} \to X^{**}$ and

$$||T_{u}||_{\mathcal{L}^{l}(Z^{**},X)} = ||T_{u}||_{\mathcal{L}^{l}(Z^{**},X^{**})}$$

On the other hand we may regard u as a c.a.s. map $\tilde{T}_u: Z \to X$. In this case $\tilde{T}_u^{**}: Z^{**} \to X^{**}$ is c.a.s. [S2, IV Cor. 3.8] and

$$\|\tilde{T}_u\|_{\mathcal{L}^l(Z,X)} = \|\tilde{T}_u^{**}\|_{\mathcal{L}^l(Z^{**},X^{**})}.$$

But clearly as maps $Z^{**} \to X^{**}$ we have $T_u = \tilde{T}_u^{**}$, so combining the two above equalities gives the desired result.

The map $j: L^p(\mu) \otimes X \to L^p(\mu; X), 1 \leq p < \infty$, defined by $j(f \otimes x)(t) = f(t)x$ extends to an isometric isomorphism from $L^p(\mu) \tilde{\otimes}_l X$ onto $L^p(\mu; X)$. In a similar way one has $C_0(\Omega) \tilde{\otimes}_l X = C_0(\Omega; X)$. This is summarized in the following proposition [S2, IV.7 Examples 1,4].

PROPOSITION 4.4: One has $L^p(\mu; X) = L^p(\mu) \tilde{\otimes}_l X$, $1 \le p < \infty$, and $C_0(\Omega; X) = C_0(\Omega) \tilde{\otimes}_l X$.

One of the surprising properties of the *l*-tensor product is that the dual is given by the same class of operators which is used to define it (the *l*-norm is 'self-dual'). More precisely, one has [S2, IV.7.4]

$$(Z\tilde{\otimes}_l X)^* = \mathcal{L}^l(Z, X^*).$$

Now we want to describe the sun-dual of $Z \tilde{\otimes}_l X$ with respect to semigroups induced by a semigroup on one of the factors. Since (in contrast to the ε - and π tensor product) the *l*-tensor product is not symmetric (even when X is a Banach lattice as well) we have to distinguish the two cases where $T_0(t)$ is given on Z or on X.

First we consider the case where we are given a C_0 -semigroup $T_0(t)$ on X with generator A_0 . As in Section 3, $\mathrm{id} \otimes T_0(t) := \mathrm{id}_Z \otimes T_0(t)$ extends to a C_0 -semigroup on $Z \otimes_I X$.

THEOREM 4.5: Each of the following conditions implies $(Z \otimes_l X)^{\odot} = Z^* \otimes_l X^{\odot}$:

- (i) $R(\lambda, A_0)$ is compact;
- (ii) $R(\lambda, A_0)$ is weakly compact and Z does not contain a sublattice isomorphic to ℓ^1 .

Proof: The inclusion \supset can be proved as in 3.5.

For $T \in \mathcal{L}^{l}(Z, X^{*})$ one has as in Proposition 3.3 that

$$R(\lambda, A)^*(T) = R(\lambda, A_0)^* \circ T.$$

Hence to prove the converse inclusion by Proposition 4.3 we have to show that $R(\lambda, A_0)^* \circ T$ is *l*-nuclear as a mapping $Z \to X^{\odot}$.

(i) Since $T: Z \to X^*$ is c.a.s, by Proposition 4.1(iii) T has a factorization

$$Z \xrightarrow{T_1} L^1(\mu) \xrightarrow{T_2} X$$

with $T_1 \geq 0$. Hence $R(\lambda, A_0)^* \circ T$ factorizes as

$$Z \xrightarrow{T_1} L^1(\mu) \xrightarrow{T'_2} X,$$

with $T'_2 = R(\lambda, A_0)^* \circ T_2$ compact and taking values in X^{\odot} . Thus by [S2, Prop. IV.8.2] $R(\lambda, A_0)^* \circ T : Z \to X^{\odot}$ is *l*-nuclear.

(ii) By a result due to Schlotterbeck-Lotz (personal communication), if Y is reflexive and Z contains no sublattice isomorphic to ℓ^1 , then $\mathcal{N}^l(Z,Y) = \mathcal{L}^l(Z,Y)$. Since by assumption $R(\lambda, A_0)^* : X^* \to X^{\odot}$ is weakly compact, by a well-known result of Davis-Figiel-Johnson-Pelczynski [DFJP] there exists a reflexive space Y such that $R(\lambda, A_0)^*$ admits the factorization

$$X^* \xrightarrow{R_1} Y \xrightarrow{R_2} X^{\odot}.$$

Since T is c.a.s., the operator $R_1 \circ T : Z \to Y$ is c.a.s. as well and we conclude that $R_1 \circ T$ is *l*-nuclear. Then $R(\lambda, A_0)^* \circ T = R_2 \circ R_1 \circ T$ is *l*-nuclear as well.

Note that both $Z = C_0(\Omega)$ and $Z = L^p(\mu)$, $1 do not contain <math>\ell^1$ as a sublattice.

Now we will discuss the case where we are given a C_0 -semigroup $T_0(t)$ on Z. In general for a bounded linear operator T on Z, the operator $T \otimes id$ does not admit an extension to a bounded operator on $Z \otimes_l X$. If however T possesses a modulus |T|, then the extension exists and

$$\|T\tilde{\otimes}_l\mathrm{id}\| \leq \| \|T\| \|.$$

Therefore in order to be sure that $T_0(t)\otimes$ id admits an extension to a C_0 semigroup $T(t) = T_0(t)\tilde{\otimes}_l$ id of bounded operators on $Z\tilde{\otimes}_l X$, we will assume that $T_0(t)$ is a *positive* semigroup (see [Na]). Then for λ sufficiently large $R(\lambda, A_0)$ is positive, hence $R(\lambda, A_0)\otimes$ id extends to a bounded linear operator on $Z\tilde{\otimes}_l X$. One easily shows that this extension equals $R(\lambda, A)$, the resolvent of the generator Aof T(t). Similarly as in Proposition 3.3 one has that $R(\lambda, A)^*$ considered as an operator on $\mathcal{L}^l(Z, X^*) = (Z\tilde{\otimes}_l X)^*$ is given by

$$R(\lambda, A)^*(T) = T \circ R(\lambda, A_0).$$

In order to be able to identify $(Z \tilde{\otimes}_l X)^{\odot}$ with $Z^{\odot} \tilde{\otimes}_l X^*$ we need a certain compactness property of $R(\lambda, A_0)$ which we will describe next.

Definition 4.6: An operator $T \in \mathcal{L}(Z)$ is called *r*-compact if its modulus |T| exists and there is a sequence of finite rank operators $\Phi_n \in Z^* \otimes Z$ such that

$$\lim_{n\to\infty} \| |T-\Phi_n| \| = 0.$$

The adjoint of an r-compact operator is r-compact again. Since $||T|| \leq ||T|||$, every r-compact operator is compact. In case $Z = L^1(\mu)$ or $Z = C_0(\Omega)$ the converse is true (see [S2]). For $Z = L^2(\mu)$ the situation is different. In [Fr2] an example is given of a positive compact operator on $L^2(\mu)$ which is not r-compact. However, in $L^2(\mu)$ every Hilbert-Schmidt operator is r-compact.

Note that a sufficient condition for r-compactness for a positive T is the existence of a positive sequence Φ_n of finite rank operators satisfying $0 \le \Phi_n \le T$ and $||T - \Phi_n|| \to 0$. This is a convenient criterion to check, e.g., whether kernel operators are r-compact.

THEOREM 4.7: Suppose $T_0(t)$ is a positive C_0 -semigroup on a Banach lattice Zwhose resolvent $R(\lambda, A_0)$ is r-compact for sufficiently large λ . Then $(Z \tilde{\otimes}_l X)^{\odot}$ is the closure in $Z^* \tilde{\otimes}_l X^*$ of $Z^{\odot} \otimes X^*$. If Z^{\odot} is a sublattice of Z^* then $(Z \tilde{\otimes}_l X)^{\odot} = Z^{\odot} \tilde{\otimes}_l X^*$.

Proof: As before, we will show that $R(\lambda, A)^{2*}(\mathcal{L}^{l}(Z, X^{*})) \subset \overline{\operatorname{span}}(Z^{\odot} \otimes X^{*})$, the closure taken in $Z^{*} \tilde{\otimes}_{l} X^{*}$. By assumption there are finite rank operators Φ_{n} satisfying $|| |R(\lambda, A_{0}) - \Phi_{n}| || \to 0$. Given $T \in \mathcal{L}^{l}(Z, X^{*})$ it follows that

$$\begin{aligned} \|R(\lambda,A)^{2*}(T) - T \circ \Phi_n \circ R(\lambda,A_0)\|_l &= \|T \circ (R(\lambda,A_0) - \Phi_n) \circ R(\lambda,A_0)\|_l \\ &\leq \|T\|_l \| \|R(\lambda,A_0) - \Phi_n\| \| \|R(\lambda,A_0)\| \\ &\to 0. \end{aligned}$$

Moreover if $\Phi_n = \sum_{i=1}^m z_i^* \otimes z_i$ then $T \circ \Phi_n \circ R(\lambda, A_0) = \sum_{i=1}^m R(\lambda, A_0)^* z_i^* \otimes T z_i \in Z^{\odot} \otimes X^*$ and the first part of the theorem is proved. The additional statement is a consequence of the left-injectivity of the *l*-tensor product in the sense that if Z_1 is a sublattice of Z_2 , then $Z_1 \tilde{\otimes}_l X$ can be identified with a closed subspace of $Z_2 \tilde{\otimes}_l X$ (see [S2]).

By the result of de Pagter mentioned after 3.6, the second statement of 4.7 applies to the case where Z^* has order continuous norm.

COROLLARY 4.8: Suppose Z is a Banach lattice with Z* having order continuous norm and let $T_0(t)$ be a positive semigroup on Z. If $R(\lambda, A_0)$ is r-compact for sufficiently large λ , then $(Z \otimes_l X)^{\odot \odot} = Z \otimes_l X^{**}$.

Proof: Since $R(\lambda, A_0)$ is r-compact, hence compact, we have $Z^{\odot \odot} = Z$. Now since Z^* has order continuous norm, by the result of de Pagter Z^{\odot} is a projection

band in Z^* . Hence we can apply Theorem 4.7 to find that $(Z \otimes_i X)^{\odot} = Z^{\odot} \otimes_i X^*$. Moreover, the canonical embedding $Z \to Z^{\odot*}$ factorizes as $Z \to Z^{**} \to Z^{\odot*}$ where the second map is the adjoint of the inclusion map $i: Z^{\odot} \to Z^*$. But since Z^{\odot} is a band, i^* is a lattice homomorphism. Combining this with the embedding $Z \to Z^{**}$ it follows that $Z^{\odot\odot} = Z$ is a sublattice of $Z^{\odot*}$. Hence we can apply 4.7 to the positive semigroup $T_0^{\odot}(t)$ on Z^{\odot} . Note that this semigroup has *r*-compact resolvent as well. Indeed, $R(\lambda, A_0)^*: Z^* \to Z^*$ is *r*-compact and Z^{\odot} is complemented in Z^* by a positive projection.

Weak compactness is not sufficient for the conclusion of Theorem 4.7 to hold: take any uniformly continuous semigroup on $L^p(\mu)$, 1 and note that in $general <math>L^p(\mu; X)^* = (L^p(\mu) \tilde{\otimes}_l X)^* \neq L^q(\mu) \tilde{\otimes}_l X^* = L^q(\mu; X^*)$.

Remark 4.9: An inspection of the proof of Theorem 4.7 shows that the assumption of r-compactness of the resolvent can be weakened to the following assumption: $T \circ R(\lambda, A_0)$ is *l*-nuclear for every $T \in \mathcal{L}^l(Z, X^*)$. This condition is satisfied when e.g. $Z = L^p(\mu)$ $(1 and the resolvent <math>R(\lambda, A_0)$ is represented by a positive measurable kernel k, i.e.,

$$(R(\lambda, A_0)f)(x) = \int k(x, y)f(y) \ d\mu(y)$$
 for μ -a.a. x ,

where k satisfies the condition

$$\sup_{x}\int k(x,y)^{q} d\mu(y) < \infty, \qquad \frac{1}{p} + \frac{1}{q} = 1.$$

This can be seen as follows. If $T \in \mathcal{L}^{l}(L^{p}(\mu), X^{*})$ then by 4.1(iv) there exists a function $\phi \in L^{q}(\mu), \phi \geq 0$ such that $||Tf|| \leq \langle \phi, |f| \rangle$ for all $f \in L^{p}(\mu)$. Thus T has an extension to a bounded operator on $L^{1}(\phi d\mu)$, which we denote by T_{1} . Let $i: L^{p}(\mu) \to L^{1}(\phi d\mu)$ be the canonical embedding. Then $i \circ R(\lambda, A_{0})$ is also represented by k. In order to show that $i \circ R(\lambda, A_{0})$ is *l*-nuclear we have to verify that $k \in L^{q}(\mu) \otimes_{l} L^{1}(\phi d\mu) = L^{q}(\mu; L^{1}(\phi d\mu))$. By Jensen's inequality,

$$\begin{split} \int \left| \int k(x,y)\phi(x) \ d\mu(x) \right|^q d\mu(y) &\leq \int \int k(x,y)^q \phi(x)^q d\mu(x) d\mu(y) \\ &= \int \left(\int k(x,y)^q d\mu(y) \right) \phi(x)^q d\mu(x) \\ &\leq \left(\sup_x \int k(x,y)^q d\mu(y) \right) \cdot \|\phi\|_q^q. \end{split}$$

Thus $k \in L^q(\mu; L^1(\phi d\mu))$ and hence $i \circ R(\lambda, A_0)$ is *l*-nuclear. Then $T \circ R(\lambda, A_0) = T_1 \circ i \circ R(\lambda, A_0)$ is *l*-nuclear as well.

This criterion can be used for the translation group on $L^p(\mathbb{R})$ $(1 . In this case <math>R(\lambda, A_0)$ is given by

$$(R(\lambda, A_0)f)(x) = \int_x^\infty e^{\lambda(x-y)} f(y) \, dy,$$

so $k(x,y) = e^{\lambda(x-y)}\chi_{(x,\infty)}$. Hence for each x,

$$\int_{\mathbb{R}} k(x,y)^q \, dy = \int_x^\infty e^{\lambda q(x-y)} \, dy = \frac{1}{\lambda q}.$$

Therefore we obtain:

THEOREM 4.10: Let $T_0(t)$ be the translation group on $L^p(\mathbb{R})$, $1 . Then <math>L^p(\mathbb{R}; X)^{\odot} = L^q(\mathbb{R}; X^*)$.

This example shows that the criterion from Remark 4.9 is weaker that the one of Theorem 4.7: for the translation group on $L^{p}(\mathbb{R})$ the resolvent is not compact and therefore certainly not *r*-compact.

We close with an application of Theorems 4.5 and 4.7 to vector valued $L^{p}(\mu)$ -spaces.

THEOREM 4.11: Consider a space $L^{p}(\mu)$, 1 , and an arbitrary Banach space X.

 (i) Given a C₀-semigroup T₀(t) on X which is sun-reflexive, then the induced semigroup on L^p(μ; X) is sun-reflexive as well. Moreover,

$$L^{p}(\mu, X)^{\odot} = L^{q}(\mu; X^{\odot}).$$

(ii) Given a positive C₀-semigroup on L^p(μ) with r-compact resolvent, then for the semigroup induced on L^p(μ; X) we have L^p(μ; X)[⊙] = L^q(μ; X*) and L^p(μ; X)^{⊙⊙} = L^p(μ; X**).

Proof: (i) ℓ^1 does not embed into the reflexive space $L^p(\mu)$. (ii) Since $L^p(\mu)$ is reflexive, $L^p(\mu)^{\odot} = L^q(\mu)$ is a sublattice of $L^q(\mu)$.

References

- [BB] P. L. Butzer and H. Berens, Semigroups of Operators and Approximation, Springer-Verlag, New York, 1967.
- [Ch] J. Chaney, Banach lattices of compact maps, Math. Z. 129 (1972), 1-19.
- [DFJP] W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczynski, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
- [DS] N. Dunford and J. Schwartz, Linear Operators, Part I. General Theory, Interscience, New York, 1958.
- [DU] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys No. 15, Am. Math. Soc., Providence, R.I., 1977.
- [Fr1] D. H. Fremlin, Tensor products of Banach lattices, Math. Ann. 211 (1974), 87-106.
- [Fr2] D. H. Fremlin, A positive compact operator, Manuscr. Math. 15 (1975), 323– 327.
- [HPh] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Am. Math. Soc. Colloq. Publ., Vol. 31, Am. Math. Soc., rev. ed., Providence, R.I., 1957.
- [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.
- [Na] R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Lecture Notes in Mathematics 1184, Springer-Verlag, Berlin, 1986.
- [Ne] J. M. A. M. van Neerven, Hahn-Banach type theorems for adjoint semigroups, Math. Ann. 287 (1990), 63-71.
- [P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Math. Sciences 44, Springer-Verlag, Berlin, 1983.
- [Pa1] B. de Pagter, Semigroups in spaces of Bochner integrable functions and their duals, in Semigroup Theory and Applications, Lecture Notes in Pure and Applied Mathematics, Vol. 166, pp. 331-339, Marcel Dekker Inc., New York-Basel, 1989.
- [Pa2] B. de Pagter, A characterization of sun-reflexivity, Math. Ann. 283 (1989), 511-518.
- [P1] A. Plessner, Eine Kennzeichnung der totalstetigen Funktionen, J. reine ang. Math. 160 (1929), 26-32.
- [S1] H. H. Schaefer, Topological Vector Spaces, The Macmillan Company, New York, 1966.

- [S2] H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin, 1974.
- [S3] H. H. Schaefer, Normed tensor products of Banach lattices, Isr. J. Math. 13 (1972), 400-415.